Download
Quantifying compartment.pdf 2,39MB
WeightNameValue
1000 Titel
  • Quantifying compartment‐associated variations of protein abundance in proteomics data
1000 Autor/in
  1. Parca, Luca |
  2. Beck, Martin |
  3. Bork, Peer |
  4. Ori, Alessandro |
1000 Erscheinungsjahr 2018
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-07-24
1000 Erschienen in
1000 Quellenangabe
  • 14(7):e8131
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.15252/msb.20178131 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29967062/ |
1000 Ergänzendes Material
  • https://www.embopress.org/doi/10.15252/msb.20178131#support-information-section |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Quantitative mass spectrometry enables to monitor the abundance of thousands of proteins across biological conditions. Currently, most data analysis approaches rely on the assumption that the majority of the observed proteins remain unchanged across compared samples. Thus, gross morphological differences between cell states, deriving from, e.g., differences in size or number of organelles, are often not taken into account. Here, we analyzed multiple published datasets and frequently observed that proteins associated with a particular cellular compartment collectively increase or decrease in their abundance between conditions tested. We show that such effects, arising from underlying morphological differences, can skew the outcome of differential expression analysis. We propose a method to detect and normalize morphological effects underlying proteomics data. We demonstrate the applicability of our method to different datasets and biological questions including the analysis of sub‐cellular proteomes in the context of Caenorhabditis elegans aging. Our method provides a complementary perspective to classical differential expression analysis and enables to uncouple overall abundance changes from stoichiometric variations within defined group of proteins.
1000 Sacherschließung
lokal organelle
lokal linear model
lokal proteomics
lokal differential expression
lokal cellular compartment
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGFyY2EsIEx1Y2E=|https://orcid.org/0000-0002-7397-1321|https://orcid.org/0000-0002-2627-833X|https://orcid.org/0000-0002-3046-0871
1000 Label
1000 Förderer
  1. European Molecular Biology Laboratory |
  2. Federal Government of Germany |
  3. State of Thuringia |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Molecular Biology Laboratory |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Federal Government of Germany |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer State of Thuringia |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6416105.rdf
1000 Erstellt am 2019-09-03T11:06:49.813+0200
1000 Erstellt von 285
1000 beschreibt frl:6416105
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2020-03-23T09:04:22.323+0100
1000 Objekt bearb. Mon Mar 23 09:04:12 CET 2020
1000 Vgl. frl:6416105
1000 Oai Id
  1. oai:frl.publisso.de:frl:6416105 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source