Download
Li_2018_Environ._Res._Lett._13_014015.pdf 2,37MB
WeightNameValue
1000 Titel
  • Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016
1000 Autor/in
  1. Li, Chunxiang |
  2. Tian, Qinhua |
  3. Yu, Rong |
  4. BaiQuan, Zhou |
  5. Xia, Jiangjiang |
  6. Burke, Claire |
  7. Dong, Buwen |
  8. Tett, Simon |
  9. Freychet, Nicolas |
  10. Lott, Fraser |
  11. Ciavarella, Andrew |
1000 Erscheinungsjahr 2018
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-01-11
1000 Erschienen in
1000 Quellenangabe
  • 13(1):014015
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1088/1748-9326/aa9691 |
1000 Ergänzendes Material
  • https://iopscience.iop.org/1748-9326/13/1/014015/media/ERL_13_1_014015_suppdata.pdf |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961–2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015–2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.
1000 Sacherschließung
lokal anthropogenic influence
lokal extreme rainfall
lokal risk ratio
lokal El Nino
lokal extreme event attribution
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIENodW54aWFuZw==|https://frl.publisso.de/adhoc/uri/VGlhbiwgUWluaHVhIA==|https://frl.publisso.de/adhoc/uri/WXUsIFJvbmcg|https://orcid.org/0000-0002-3709-5336|https://frl.publisso.de/adhoc/uri/WGlhLCBKaWFuZ2ppYW5nIA==|https://frl.publisso.de/adhoc/uri/QnVya2UsIENsYWlyZQ==|https://orcid.org/0000-0003-0809-7911|https://orcid.org/0000-0001-7526-560X|https://orcid.org/0000-0003-2207-4425|https://frl.publisso.de/adhoc/uri/TG90dCwgRnJhc2VyIA==|https://frl.publisso.de/adhoc/uri/Q2lhdmFyZWxsYSwgQW5kcmV3
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6417963.rdf
1000 Erstellt am 2019-12-10T15:22:23.964+0100
1000 Erstellt von 218
1000 beschreibt frl:6417963
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2019-12-10T15:27:01.693+0100
1000 Objekt bearb. Tue Dec 10 15:25:15 CET 2019
1000 Vgl. frl:6417963
1000 Oai Id
  1. oai:frl.publisso.de:frl:6417963 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source