Download
1-s2.0-S2095809920300424-main.pdf 354,08KB
WeightNameValue
1000 Titel
  • Core Outcome Set for Clinical Trials on Coronavirus Disease 2019 (COS-COVID)
1000 Autor/in
  1. Jin, Xinyao |
  2. Pang, Bo |
  3. Zhang, Junhua |
  4. Liu, Qingquan |
  5. Yang, Zhongqi |
  6. Feng, Jihong |
  7. Liu, Xuezheng |
  8. Zhang, Lei |
  9. Wang, Baohe |
  10. Huang, Yuhong |
  11. Josephine Fauci, Alice |
  12. Ma, Yuling |
  13. Soo Lee, Myeong |
  14. Yuan, Wei'an |
  15. Xie, Yanming |
  16. Tang, Jianyuan |
  17. Gao, Rui |
  18. Du, Liang |
  19. Zhang, Shuo |
  20. Qi, Hanmei |
  21. Sun, Yu |
  22. Zheng, Wenke |
  23. Yang, Fengwen |
  24. Chua, Huizi |
  25. Wang, Keyi |
  26. Ou, Yi |
  27. Huang, Ming |
  28. Zhu, Yan |
  29. Yu, Jiajie |
  30. Tian, Jinhui |
  31. Zhao, Min |
  32. Hu, Jingqing |
  33. Yao, Chen |
  34. Li, Youping |
  35. Zhang, Boli |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-03-18
1000 Erschienen in
1000 Quellenangabe
  • In Press
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.eng.2020.03.002 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102592/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Since its outbreak in December 2019, a series of clinical trials on Coronavirus Disease 2019 (COVID-19) have been registered or carried out. However, the significant heterogeneity and less critical outcomes of such trials may be leading to a waste of research resources. This study aimed to develop a core outcome set (COS) for clinical trials on COVID-19 in order to tackle the outcome issues. The study was conducted according to the Core Outcome Measures in Effectiveness Trials (COMET) handbook (version 1.0), a guideline for COS development. A research group was set up that included experts in respiratory and critical medicine, traditional Chinese medicine, evidence-based medicine, clinical pharmacology, and statistics, in addition to medical journal editors. Clinical trial registry websites (chictr.org.cn and clinicaltrials.gov) were searched to retrieve clinical trial protocols and outcomes in order to form an outcome pool. A total of 78 clinical trial protocols on COVID-19 were included and 259 outcomes were collected. After standardization, 132 outcomes were identified within seven different categories, of which 58 were selected to develop a preliminary outcome list for further consensus. After two rounds of Delphi survey and one consensus meeting, the most important outcomes for the different clinical classifications of COVID-19 were identified and determined to constitute the COS for clinical trials on COVID-19 (COS-COVID). The COS-COVID includes one outcome for the mild type (time to 2019-nCoV reverse transcription-polymerase chain reaction (RT-PCR) negativity), four outcomes for the ordinary type (length of hospital stay, composite events, score of clinical symptoms, and time to 2019-nCoV RT-PCR negativity), five outcomes for the severe type (composite events, length of hospital stay, arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2), duration of mechanical ventilation, and time to 2019-nCoV RT-PCR negativity), one outcome for critical type (all-cause mortality), and one outcome for rehabilitation period (pulmonary function). The COS-COVID is currently the most valuable and practical clinical outcome set for the evaluation of intervention effect, and is useful for evidence assessment and decision-making. With a deepening understanding of COVID-19 and application feedback, the COS-COVID should be continuously updated.
1000 Sacherschließung
lokal Core outcome set
gnd 1206347392 COVID-19
lokal Clinical trials
lokal 2019-nCoV
lokal Coronavirus disease
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SmluLCBYaW55YW8=|https://frl.publisso.de/adhoc/uri/UGFuZywgQm8=|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEp1bmh1YQ==|https://frl.publisso.de/adhoc/uri/TGl1LCBRaW5ncXVhbg==|https://frl.publisso.de/adhoc/uri/WWFuZywgWmhvbmdxaQ==|https://frl.publisso.de/adhoc/uri/RmVuZywgSmlob25n|https://frl.publisso.de/adhoc/uri/TGl1LCBYdWV6aGVuZw==|https://frl.publisso.de/adhoc/uri/WmhhbmcsIExlaQ==|https://frl.publisso.de/adhoc/uri/V2FuZywgQmFvaGU=|https://frl.publisso.de/adhoc/uri/SHVhbmcsIFl1aG9uZw==|https://frl.publisso.de/adhoc/uri/Sm9zZXBoaW5lIEZhdWNpLCBBbGljZQ==|https://frl.publisso.de/adhoc/uri/TWEsIFl1bGluZw==|https://frl.publisso.de/adhoc/uri/U29vIExlZSwgTXllb25n|https://frl.publisso.de/adhoc/uri/WXVhbiwgV2VpJ2Fu|https://frl.publisso.de/adhoc/uri/WGllLCBZYW5taW5n|https://frl.publisso.de/adhoc/uri/VGFuZywgSmlhbnl1YW4=|https://frl.publisso.de/adhoc/uri/R2FvLCBSdWk=|https://frl.publisso.de/adhoc/uri/RHUsIExpYW5n|https://frl.publisso.de/adhoc/uri/WmhhbmcsIFNodW8=|https://frl.publisso.de/adhoc/uri/UWksIEhhbm1laQ==|https://frl.publisso.de/adhoc/uri/U3VuLCBZdQ==|https://frl.publisso.de/adhoc/uri/WmhlbmcsIFdlbmtl|https://frl.publisso.de/adhoc/uri/WWFuZywgRmVuZ3dlbg==|https://frl.publisso.de/adhoc/uri/Q2h1YSwgSHVpemk=|https://frl.publisso.de/adhoc/uri/V2FuZywgS2V5aQ==|https://frl.publisso.de/adhoc/uri/T3UsIFlp|https://frl.publisso.de/adhoc/uri/SHVhbmcsIE1pbmc=|https://frl.publisso.de/adhoc/uri/Wmh1LCBZYW4=|https://frl.publisso.de/adhoc/uri/WXUsIEppYWppZQ==|https://frl.publisso.de/adhoc/uri/VGlhbiwgSmluaHVp|https://frl.publisso.de/adhoc/uri/WmhhbywgTWlu|https://frl.publisso.de/adhoc/uri/SHUsIEppbmdxaW5n|https://frl.publisso.de/adhoc/uri/WWFvLCBDaGVu|https://frl.publisso.de/adhoc/uri/TGksIFlvdXBpbmc=|https://frl.publisso.de/adhoc/uri/WmhhbmcsIEJvbGk=
1000 Label
1000 Förderer
  1. Ministry of Science and Technology of the People's Republic of China |
1000 Fördernummer
  1. 2020yfc0841600
1000 Förderprogramm
  1. National Science and Technology Emergency Project; Integrated Traditional Chinese and Western Medicine to Control COVID-19
1000 Dateien
  1. Core Outcome Set for Clinical Trials on Coronavirus Disease 2019 (COS-COVID)
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Ministry of Science and Technology of the People's Republic of China |
    1000 Förderprogramm National Science and Technology Emergency Project; Integrated Traditional Chinese and Western Medicine to Control COVID-19
    1000 Fördernummer 2020yfc0841600
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6419952.rdf
1000 Erstellt am 2020-04-09T14:54:37.678+0200
1000 Erstellt von 122
1000 beschreibt frl:6419952
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2023-01-02T07:06:48.695+0100
1000 Objekt bearb. Mon Jan 02 07:06:47 CET 2023
1000 Vgl. frl:6419952
1000 Oai Id
  1. oai:frl.publisso.de:frl:6419952 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source