Download
1-s2.0-S2468042720300075-main.pdf 1,27MB
WeightNameValue
1000 Titel
  • Why is it difficult to accurately predict the COVID-19 epidemic?
1000 Autor/in
  1. Roda, Weston C. |
  2. Varughese, Marie B. |
  3. Han, Donglin |
  4. Li, Michael |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-03-25
1000 Erschienen in
1000 Quellenangabe
  • 5:271-281
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.idm.2020.03.001 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104073/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Since the COVID-19 outbreak in Wuhan City in December of 2019, numerous model predictions on the COVID-19 epidemics in Wuhan and other parts of China have been reported. These model predictions have shown a wide range of variations. In our study, we demonstrate that nonidentifiability in model calibrations using the confirmed-case data is the main reason for such wide variations. Using the Akaike Information Criterion (AIC) for model selection, we show that an SIR model performs much better than an SEIR model in representing the information contained in the confirmed-case data. This indicates that predictions using more complex models may not be more reliable compared to using a simpler model. We present our model predictions for the COVID-19 epidemic in Wuhan after the lockdown and quarantine of the city on January 23, 2020. We also report our results of modeling the impacts of the strict quarantine measures undertaken in the city after February 7 on the time course of the epidemic, and modeling the potential of a second outbreak after the return-to-work in the city.
1000 Sacherschließung
lokal Quarantine
gnd 1206347392 COVID-19
lokal Wuhan
lokal Model selection
lokal Nonidentifiability
lokal SIR and SEIR models
lokal Bayesian inference
lokal Peak time of epidemic
lokal epidemic
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Um9kYSwgV2VzdG9uIEMu|https://frl.publisso.de/adhoc/uri/VmFydWdoZXNlLCBNYXJpZSBCLg==|https://frl.publisso.de/adhoc/uri/SGFuLCBEb25nbGlu|https://orcid.org/0000-0002-4403-1429
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Natural Sciences and Engineering Research Council of Canada |
  2. Canada Foundation for Innovation |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
  1. Why is it difficult to accurately predict the COVID-19 epidemic?
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Natural Sciences and Engineering Research Council of Canada |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Canada Foundation for Innovation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6420089.rdf
1000 Erstellt am 2020-04-15T12:17:34.360+0200
1000 Erstellt von 122
1000 beschreibt frl:6420089
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-04-15T12:20:42.844+0200
1000 Objekt bearb. Wed Apr 15 12:18:33 CEST 2020
1000 Vgl. frl:6420089
1000 Oai Id
  1. oai:frl.publisso.de:frl:6420089 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source