Download
ijerph-17-02275-v2.pdf 774,40KB
WeightNameValue
1000 Titel
  • Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas
1000 Autor/in
  1. Zhang, Min-Xia |
  2. Yan, Hong-Fan |
  3. Wu, Jia-Yu |
  4. Zheng, Yu-Jun |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-03-27
1000 Erschienen in
1000 Quellenangabe
  • 17(7):2275
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/ijerph17072275 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • In a large-scale epidemic outbreak, there can be many high-risk individuals to be transferred for medical isolation in epidemic areas. Typically, the individuals are scattered across different locations, and available quarantine vehicles are limited. Therefore, it is challenging to efficiently schedule the vehicles to transfer the individuals to isolated regions to control the spread of the epidemic. In this paper, we formulate such a quarantine vehicle scheduling problem for high-risk individual transfer, which is more difficult than most well-known vehicle routing problems. To efficiently solve this problem, we propose a hybrid algorithm based on the water wave optimization (WWO) metaheuristic and neighborhood search. The metaheuristic uses a small population to rapidly explore the solution space, and the neighborhood search uses a gradual strategy to improve the solution accuracy. Computational results demonstrate that the proposed algorithm significantly outperforms several existing algorithms and obtains high-quality solutions on real-world problem instances for high-risk individual transfer in Hangzhou, China, during the peak period of the novel coronavirus pneumonia (COVID-19).
1000 Sacherschließung
lokal public health emergencies
lokal water wave optimization (WWO)
lokal epidemics
lokal optimization
lokal vehicle scheduling
lokal medical isolation
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3681-2305|https://frl.publisso.de/adhoc/uri/WWFuLCBIb25nLUZhbg==|https://frl.publisso.de/adhoc/uri/V3UsIEppYS1ZdQ==|https://orcid.org/0000-0002-6095-6325
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
  2. National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
1000 Fördernummer
  1. 61872123
  2. LR20F030002
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer 61872123
  2. 1000 joinedFunding-child
    1000 Förderer National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer LR20F030002
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6420357.rdf
1000 Erstellt am 2020-04-23T08:38:26.947+0200
1000 Erstellt von 21
1000 beschreibt frl:6420357
1000 Bearbeitet von 21
1000 Zuletzt bearbeitet 2020-04-23T08:39:43.841+0200
1000 Objekt bearb. Thu Apr 23 08:39:20 CEST 2020
1000 Vgl. frl:6420357
1000 Oai Id
  1. oai:frl.publisso.de:frl:6420357 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source