Download
ijerph-17-02788-v2.pdf 8,30MB
WeightNameValue
1000 Titel
  • Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China
1000 Autor/in
  1. HAN, XUEHUA |
  2. , Juanle |
  3. Zhang, Min |
  4. Wang, Xiaojie |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-04-17
1000 Erschienen in
1000 Quellenangabe
  • 17(8):2788
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/ijerph17082788 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The outbreak of Corona Virus Disease 2019 (COVID-19) is a grave global public health emergency. Nowadays, social media has become the main channel through which the public can obtain information and express their opinions and feelings. This study explored public opinion in the early stages of COVID-19 in China by analyzing Sina-Weibo (a Twitter-like microblogging system in China) texts in terms of space, time, and content. Temporal changes within one-hour intervals and the spatial distribution of COVID-19-related Weibo texts were analyzed. Based on the latent Dirichlet allocation model and the random forest algorithm, a topic extraction and classification model was developed to hierarchically identify seven COVID-19-relevant topics and 13 sub-topics from Weibo texts. The results indicate that the number of Weibo texts varied over time for different topics and sub-topics corresponding with the different developmental stages of the event. The spatial distribution of COVID-19-relevant Weibo was mainly concentrated in Wuhan, Beijing-Tianjin-Hebei, the Yangtze River Delta, the Pearl River Delta, and the Chengdu-Chongqing urban agglomeration. There is a synchronization between frequent daily discussions on Weibo and the trend of the COVID-19 outbreak in the real world. Public response is very sensitive to the epidemic and significant social events, especially in urban agglomerations with convenient transportation and a large population. The timely dissemination and updating of epidemic-related information and the popularization of such information by the government can contribute to stabilizing public sentiments. However, the surge of public demand and the hysteresis of social support demonstrated that the allocation of medical resources was under enormous pressure in the early stage of the epidemic. It is suggested that the government should strengthen the response in terms of public opinion and epidemic prevention and exert control in key epidemic areas, urban agglomerations, and transboundary areas at the province level. In controlling the crisis, accurate response countermeasures should be formulated following public help demands. The findings can help government and emergency agencies to better understand the public opinion and sentiments towards COVID-19, to accelerate emergency responses, and to support post-disaster management.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal social media
lokal China
lokal public opinion
lokal resource allocation
lokal Coronavirus
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0819-4917|https://orcid.org/0000-0002-5641-0813|https://frl.publisso.de/adhoc/uri/WmhhbmcsIE1pbg==|https://frl.publisso.de/adhoc/uri/V2FuZywgWGlhb2ppZQ==
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
  2. China Knowledge Centre for Engineering Sciences and Technology |
  3. Chinese Academy of Sciences |
1000 Fördernummer
  1. 41421001
  2. CKCEST-2019-3-6
  3. -
1000 Förderprogramm
  1. -
  2. Construction Project
  3. 13th Five-year Informatization Plan
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer 41421001
  2. 1000 joinedFunding-child
    1000 Förderer China Knowledge Centre for Engineering Sciences and Technology |
    1000 Förderprogramm Construction Project
    1000 Fördernummer CKCEST-2019-3-6
  3. 1000 joinedFunding-child
    1000 Förderer Chinese Academy of Sciences |
    1000 Förderprogramm 13th Five-year Informatization Plan
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6420521.rdf
1000 Erstellt am 2020-04-28T15:27:16.863+0200
1000 Erstellt von 122
1000 beschreibt frl:6420521
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-04-28T15:30:40.931+0200
1000 Objekt bearb. Tue Apr 28 15:29:35 CEST 2020
1000 Vgl. frl:6420521
1000 Oai Id
  1. oai:frl.publisso.de:frl:6420521 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source