Download
1-s2.0-S1201971220301193-main.pdf 483,95KB
WeightNameValue
1000 Titel
  • Serial interval of novel coronavirus (COVID-19) infections
1000 Autor/in
  1. Nishiura, Hiroshi |
  2. Linton, Natalie |
  3. Akhmetzhanov, Andrei R. |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-02-27
1000 Erschienen in
1000 Quellenangabe
  • 93:284-286
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.ijid.2020.02.060 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • OBJECTIVE To estimate the serial interval of novel coronavirus (COVID-19) from information on 28 infector-infectee pairs. METHODS We collected dates of illness onset for primary cases (infectors) and secondary cases (infectees) from published research articles and case investigation reports. We subjectively ranked the credibility of the data and performed analyses on both the full dataset (n = 28) and a subset of pairs with highest certainty in reporting (n = 18). In addition, we adjust for right truncation of the data as the epidemic is still in its growth phase. RESULTS Accounting for right truncation and analyzing all pairs, we estimated the median serial interval at 4.0 days (95% credible interval [CrI]: 3.1, 4.9). Limiting our data to only the most certain pairs, the median serial interval was estimated at 4.6 days (95% CrI: 3.5, 5.9). CONCLUSIONS The serial interval of COVID-19 is close to or shorter than its median incubation period. This suggests that a substantial proportion of secondary transmission may occur prior to illness onset. The COVID-19 serial interval is also shorter than the serial interval of severe acute respiratory syndrome (SARS), indicating that calculations made using the SARS serial interval may introduce bias.
1000 Sacherschließung
lokal Epidemiology
gnd 1206347392 COVID-19
lokal Illness onset
lokal Generation time
lokal Outbreak
lokal Statistical model
lokal Viruses
lokal Coronavirus
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-0941-8537|https://orcid.org/0000-0002-5464-0076|https://orcid.org/0000-0003-3269-7351
1000 Label
1000 Förderer
  1. Japan Agency for Medical Research and Development |
  2. Japan Society for the Promotion of Science |
  3. Japan Science and Technology Agency |
  4. Ministry of Education, Culture, Sports, Science and Technology |
1000 Fördernummer
  1. JP18fk0108050
  2. 17H04701, 17H05808, 18H04895, 19H01074
  3. JPMJCR1413
  4. -
1000 Förderprogramm
  1. -
  2. Grants-in-Aid for Scientific Research
  3. Core Research for Evolutional Science and Technology (CREST) program
  4. -
1000 Dateien
  1. Serial interval of novel coronavirus (COVID-19) infections
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Japan Agency for Medical Research and Development |
    1000 Förderprogramm -
    1000 Fördernummer JP18fk0108050
  2. 1000 joinedFunding-child
    1000 Förderer Japan Society for the Promotion of Science |
    1000 Förderprogramm Grants-in-Aid for Scientific Research
    1000 Fördernummer 17H04701, 17H05808, 18H04895, 19H01074
  3. 1000 joinedFunding-child
    1000 Förderer Japan Science and Technology Agency |
    1000 Förderprogramm Core Research for Evolutional Science and Technology (CREST) program
    1000 Fördernummer JPMJCR1413
  4. 1000 joinedFunding-child
    1000 Förderer Ministry of Education, Culture, Sports, Science and Technology |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6421134.rdf
1000 Erstellt am 2020-05-29T08:50:52.966+0200
1000 Erstellt von 21
1000 beschreibt frl:6421134
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2021-09-20T15:46:45.096+0200
1000 Objekt bearb. Mon Sep 20 15:46:44 CEST 2021
1000 Vgl. frl:6421134
1000 Oai Id
  1. oai:frl.publisso.de:frl:6421134 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source