Download
applsci-10-03880.pdf 688,18KB
WeightNameValue
1000 Titel
  • COVID-19: A Comparison of Time Series Methods to Forecast Percentage of Active Cases per Population
1000 Autor/in
  1. Papastefanopoulos, Vasileios |
  2. Linardatos, Pantelis |
  3. kotsiantis, sotiris |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-03
1000 Erschienen in
1000 Quellenangabe
  • 10(11):3880
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/app10113880 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The ongoing COVID-19 pandemic has caused worldwide socioeconomic unrest, forcing governments to introduce extreme measures to reduce its spread. Being able to accurately forecast when the outbreak will hit its peak would significantly diminish the impact of the disease, as it would allow governments to alter their policy accordingly and plan ahead for the preventive steps needed such as public health messaging, raising awareness of citizens and increasing the capacity of the health system. This study investigated the accuracy of a variety of time series modeling approaches for coronavirus outbreak detection in ten different countries with the highest number of confirmed cases as of 4 May 2020. For each of these countries, six different time series approaches were developed and compared using two publicly available datasets regarding the progression of the virus in each country and the population of each country, respectively. The results demonstrate that, given data produced using actual testing for a small portion of the population, machine learning time series methods can learn and scale to accurately estimate the percentage of the total population that will become affected in the future.
1000 Sacherschließung
lokal pandemic
gnd 1206347392 COVID-19
lokal machine learning
lokal time-series
lokal statistics
lokal Coronavirus
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8169-1373|https://orcid.org/0000-0003-1132-4724|https://orcid.org/0000-0002-2247-3082
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6421209.rdf
1000 Erstellt am 2020-06-04T09:36:02.263+0200
1000 Erstellt von 122
1000 beschreibt frl:6421209
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-06-04T10:38:03.535+0200
1000 Objekt bearb. Thu Jun 04 09:46:39 CEST 2020
1000 Vgl. frl:6421209
1000 Oai Id
  1. oai:frl.publisso.de:frl:6421209 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source