Download
journal.pone.0236621.pdf 1,33MB
WeightNameValue
1000 Titel
  • Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs
1000 Autor/in
  1. Zhu, Jocelyn |
  2. Shen, Beiyi |
  3. Abbasi, Almas |
  4. Hoshmand-Kochi, Mahsa |
  5. Li, Haifang |
  6. Duong, Tim |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-28
1000 Erschienen in
1000 Quellenangabe
  • 15(7):e0236621
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0236621 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This study employed deep-learning convolutional neural networks to stage lung disease severity of Coronavirus Disease 2019 (COVID-19) infection on portable chest x-ray (CXR) with radiologist score of disease severity as ground truth. This study consisted of 131 portable CXR from 84 COVID-19 patients (51M 55.1±14.9yo; 29F 60.1±14.3yo; 4 missing information). Three expert chest radiologists scored the left and right lung separately based on the degree of opacity (0–3) and geographic extent (0–4). Deep-learning convolutional neural network (CNN) was used to predict lung disease severity scores. Data were split into 80% training and 20% testing datasets. Correlation analysis between AI-predicted versus radiologist scores were analyzed. Comparison was made with traditional and transfer learning. The average opacity score was 2.52 (range: 0–6) with a standard deviation of 0.25 (9.9%) across three readers. The average geographic extent score was 3.42 (range: 0–8) with a standard deviation of 0.57 (16.7%) across three readers. The inter-rater agreement yielded a Fleiss’ Kappa of 0.45 for opacity score and 0.71 for extent score. AI-predicted scores strongly correlated with radiologist scores, with the top model yielding a correlation coefficient (R2) of 0.90 (range: 0.73–0.90 for traditional learning and 0.83–0.90 for transfer learning) and a mean absolute error of 8.5% (ranges: 17.2–21.0% and 8.5%-15.5, respectively). Transfer learning generally performed better. In conclusion, deep-learning CNN accurately stages disease severity on portable chest x-ray of COVID-19 lung infection. This approach may prove useful to stage lung disease severity, prognosticate, and predict treatment response and survival, thereby informing risk management and resource allocation.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Respiratory infections
lokal Virus testing
lokal Artificial intelligence
lokal Radiologists
lokal Machine learning algorithms
lokal Radiology and imaging
lokal Opacity
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Wmh1LCBKb2NlbHlu|https://frl.publisso.de/adhoc/uri/U2hlbiwgQmVpeWk=|https://frl.publisso.de/adhoc/uri/QWJiYXNpLCBBbG1hcw==|https://frl.publisso.de/adhoc/uri/SG9zaG1hbmQtS29jaGksIE1haHNh|https://frl.publisso.de/adhoc/uri/TGksIEhhaWZhbmc=|https://orcid.org/0000-0001-6403-2827
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422206.rdf
1000 Erstellt am 2020-07-29T12:44:40.752+0200
1000 Erstellt von 122
1000 beschreibt frl:6422206
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-07-29T12:47:50.808+0200
1000 Objekt bearb. Wed Jul 29 12:47:27 CEST 2020
1000 Vgl. frl:6422206
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422206 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source