Download
journal.pone.0236860.pdf 1,72MB
WeightNameValue
1000 Titel
  • Estimation of COVID-19 spread curves integrating global data and borrowing information
1000 Autor/in
  1. Lee, Se Yoon |
  2. Lei, Bowen |
  3. Mallick, Bani |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-29
1000 Erschienen in
1000 Quellenangabe
  • 15(7):e0236860
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0236860 |
1000 Ergänzendes Material
  • https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236860#sec013 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data for real-time prediction of infection trajectory for multiple countries. Because the proposed model takes advantage of borrowing information across multiple countries, it outperforms an existing individual country-based model. As fully Bayesian way has been adopted, the model provides a powerful predictive tool endowed with uncertainty quantification. Additionally, a joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify possible country-level risk factors for severe disease due to COVID-19.
1000 Sacherschließung
lokal Epidemiology
lokal United States
gnd 1206347392 COVID-19
lokal Infectious disease epidemiology
lokal Respiratory infections
lokal Infectious disease control
lokal Forecasting
lokal Pandemics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-9551-5562|https://orcid.org/0000-0001-7141-7485|https://frl.publisso.de/adhoc/uri/TWFsbGljaywgQmFuaQ==
1000 Label
1000 Förderer
  1. National Cancer Institute |
  2. National Science Foundation |
1000 Fördernummer
  1. R01CA194391
  2. CCF-1934904
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Cancer Institute |
    1000 Förderprogramm -
    1000 Fördernummer R01CA194391
  2. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer CCF-1934904
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422218.rdf
1000 Erstellt am 2020-07-30T08:50:04.523+0200
1000 Erstellt von 122
1000 beschreibt frl:6422218
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-07-30T08:57:47.994+0200
1000 Objekt bearb. Thu Jul 30 08:57:31 CEST 2020
1000 Vgl. frl:6422218
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422218 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source