Download
journal.pone.0236386.pdf 828,49KB
WeightNameValue
1000 Titel
  • A data-driven model to describe and forecast the dynamics of COVID-19 transmission
1000 Autor/in
  1. Paiva, Henrique |
  2. Afonso, Rubens |
  3. de Oliveira, Igor Luppi |
  4. Fernandes Garcia, Gabriele |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-31
1000 Erschienen in
1000 Quellenangabe
  • 15(7):e0236386
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0236386 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This paper proposes a dynamic model to describe and forecast the dynamics of the coronavirus disease COVID-19 transmission. The model is based on an approach previously used to describe the Middle East Respiratory Syndrome (MERS) epidemic. This methodology is used to describe the COVID-19 dynamics in six countries where the pandemic is widely spread, namely China, Italy, Spain, France, Germany, and the USA. For this purpose, data from the European Centre for Disease Prevention and Control (ECDC) are adopted. It is shown how the model can be used to forecast new infection cases and new deceased and how the uncertainties associated to this prediction can be quantified. This approach has the advantage of being relatively simple, grouping in few mathematical parameters the many conditions which affect the spreading of the disease. On the other hand, it requires previous data from the disease transmission in the country, being better suited for regions where the epidemic is not at a very early stage. With the estimated parameters at hand, one can use the model to predict the evolution of the disease, which in turn enables authorities to plan their actions. Moreover, one key advantage is the straightforward interpretation of these parameters and their influence over the evolution of the disease, which enables altering some of them, so that one can evaluate the effect of public policy, such as social distancing. The results presented for the selected countries confirm the accuracy to perform predictions.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Infectious disease epidemiology
lokal Italy
lokal Respiratory infections
lokal SARS
lokal Death rates
lokal Disease dynamics
lokal Pandemics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-7081-8383|https://orcid.org/0000-0001-9209-2253|https://frl.publisso.de/adhoc/uri/ZGUgT2xpdmVpcmEsIElnb3IgTHVwcGk=|https://orcid.org/0000-0001-5816-0312
1000 Label
1000 Förderer
  1. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
  2. Alexander von Humboldt-Stiftung |
  3. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. #88881.145490/2017-01; 001
  2. #88881.145490/2017-01
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
    1000 Förderprogramm -
    1000 Fördernummer #88881.145490/2017-01; 001
  2. 1000 joinedFunding-child
    1000 Förderer Alexander von Humboldt-Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer #88881.145490/2017-01
  3. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422298.rdf
1000 Erstellt am 2020-08-04T11:34:51.999+0200
1000 Erstellt von 122
1000 beschreibt frl:6422298
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-08-04T11:41:47.944+0200
1000 Objekt bearb. Tue Aug 04 11:36:25 CEST 2020
1000 Vgl. frl:6422298
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422298 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source