Download
journal.pone.0236618.pdf 951,43KB
WeightNameValue
1000 Titel
  • Prediction model and risk scores of ICU admission and mortality in COVID-19
1000 Autor/in
  1. Zhao, Zirun |
  2. Chen, Anne |
  3. Hou, Wei |
  4. Graham, James M. |
  5. Li, Haifang |
  6. Richman, Paul S. |
  7. Thode, Henry C. |
  8. Singer, Adam J. |
  9. Duong, Tim Q. |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-30
1000 Erschienen in
1000 Quellenangabe
  • 15(7):e0236618
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0236618 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This study aimed to develop risk scores based on clinical characteristics at presentation to predict intensive care unit (ICU) admission and mortality in COVID-19 patients. 641 hospitalized patients with laboratory-confirmed COVID-19 were selected from 4997 persons under investigation. We performed a retrospective review of medical records of demographics, comorbidities and laboratory tests at the initial presentation. Primary outcomes were ICU admission and death. Logistic regression was used to identify independent clinical variables predicting the two outcomes. The model was validated by splitting the data into 70% for training and 30% for testing. Performance accuracy was evaluated using area under the curve (AUC) of the receiver operating characteristic analysis (ROC). Five significant variables predicting ICU admission were lactate dehydrogenase, procalcitonin, pulse oxygen saturation, smoking history, and lymphocyte count. Seven significant variables predicting mortality were heart failure, procalcitonin, lactate dehydrogenase, chronic obstructive pulmonary disease, pulse oxygen saturation, heart rate, and age. The mortality group uniquely contained cardiopulmonary variables. The risk score model yielded good accuracy with an AUC of 0.74 ([95% CI, 0.63–0.85], p = 0.001) for predicting ICU admission and 0.83 ([95% CI, 0.73–0.92], p<0.001) for predicting mortality for the testing dataset. This study identified key independent clinical variables that predicted ICU admission and mortality associated with COVID-19. This risk score system may prove useful for frontline physicians in clinical decision-making under time-sensitive and resource-constrained environment.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Medical risk factors
lokal Chronic obstructive pulmonary disease
lokal Lymphocytes
lokal Respiratory infections
lokal Virus testing
lokal Intensive care units
lokal Forecasting
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WmhhbywgWmlydW4=|https://frl.publisso.de/adhoc/uri/Q2hlbiwgQW5uZQ==|https://frl.publisso.de/adhoc/uri/SG91LCBXZWk=|https://frl.publisso.de/adhoc/uri/R3JhaGFtLCBKYW1lcyBNLg==|https://frl.publisso.de/adhoc/uri/TGksIEhhaWZhbmc=|https://frl.publisso.de/adhoc/uri/UmljaG1hbiwgUGF1bCBTLg==|https://frl.publisso.de/adhoc/uri/VGhvZGUsIEhlbnJ5IEMu|https://frl.publisso.de/adhoc/uri/U2luZ2VyLCBBZGFtIEou|https://frl.publisso.de/adhoc/uri/RHVvbmcsIFRpbSBRLg==
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422308.rdf
1000 Erstellt am 2020-08-04T13:13:54.475+0200
1000 Erstellt von 122
1000 beschreibt frl:6422308
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-08-04T13:15:31.307+0200
1000 Objekt bearb. Tue Aug 04 13:15:11 CEST 2020
1000 Vgl. frl:6422308
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422308 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source