Download
journal.pone.0237628.pdf 1,74MB
WeightNameValue
1000 Titel
  • A simulation modelling toolkit for organising outpatient dialysis services during the COVID-19 pandemic
1000 Autor/in
  1. Allen, Michael |
  2. Bhanji, Amir |
  3. Willemsen, Jonas |
  4. Dudfield, Steven |
  5. Logan, Stuart |
  6. Monks, Thomas |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-08-13
1000 Erschienen in
1000 Quellenangabe
  • 15(8):e0237628
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0237628 |
1000 Ergänzendes Material
  • https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237628#sec024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This study presents two simulation modelling tools to support the organisation of networks of dialysis services during the COVID-19 pandemic. These tools were developed to support renal services in the South of England (the Wessex region caring for 650 dialysis patients), but are applicable elsewhere. A discrete-event simulation was used to model a worst case spread of COVID-19, to stress-test plans for dialysis provision throughout the COVID-19 outbreak. We investigated the ability of the system to manage the mix of COVID-19 positive and negative patients, the likely effects on patients, outpatient workloads across all units, and inpatient workload at the centralised COVID-positive inpatient unit. A second Monte-Carlo vehicle routing model estimated the feasibility of patient transport plans. If current outpatient capacity is maintained there is sufficient capacity in the South of England to keep COVID-19 negative/recovered and positive patients in separate sessions, but rapid reallocation of patients may be needed. Outpatient COVID-19 cases will spillover to a secondary site while other sites will experience a reduction in workload. The primary site chosen to manage infected patients will experience a significant increase in outpatients and inpatients. At the peak of infection, it is predicted there will be up to 140 COVID-19 positive patients with 40 to 90 of these as inpatients, likely breaching current inpatient capacity. Patient transport services will also come under considerable pressure. If patient transport operates on a policy of one positive patient at a time, and two-way transport is needed, a likely scenario estimates 80 ambulance drive time hours per day (not including fixed drop-off and ambulance cleaning times). Relaxing policies on individual patient transport to 2-4 patients per trip can save 40-60% of drive time. In mixed urban/rural geographies steps may need to be taken to temporarily accommodate renal COVID-19 positive patients closer to treatment facilities.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Medical dialysis
lokal Ambulances
lokal Simulation and modeling
lokal Respiratory infections
lokal Outpatients
lokal Pandemics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QWxsZW4sIE1pY2hhZWw=|https://frl.publisso.de/adhoc/uri/QmhhbmppLCBBbWly|https://frl.publisso.de/adhoc/uri/V2lsbGVtc2VuLCBKb25hcw==|https://frl.publisso.de/adhoc/uri/RHVkZmllbGQsIFN0ZXZlbg==|https://frl.publisso.de/adhoc/uri/TG9nYW4sIFN0dWFydA==|https://orcid.org/0000-0003-2631-4481
1000 Label
1000 Förderer
  1. National Institute for Health Research |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Institute for Health Research |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422648.rdf
1000 Erstellt am 2020-08-18T15:33:58.252+0200
1000 Erstellt von 122
1000 beschreibt frl:6422648
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-08-18T15:42:10.285+0200
1000 Objekt bearb. Tue Aug 18 15:41:44 CEST 2020
1000 Vgl. frl:6422648
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422648 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source