Download
s10237-019-01204-7.pdf 11,50MB
WeightNameValue
1000 Titel
  • A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues
1000 Autor/in
  1. Van Liedekerke,Paul |
  2. Neitsch, Johannes |
  3. Johann, Tim |
  4. Warmt, Enrico |
  5. Gonzàlez-Valverde, Ismael |
  6. Hoehme, Stefan |
  7. Grosser, Steffen |
  8. Kaes, Josef |
  9. Drasdo, Dirk |
1000 Erscheinungsjahr 2019
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-11-20
1000 Erschienen in
1000 Quellenangabe
  • 19:189–220
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s10237-019-01204-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005086/ |
1000 Ergänzendes Material
  • https://link.springer.com/article/10.1007%2Fs10237-019-01204-7#Sec19 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Mathematical models are increasingly designed to guide experiments in biology, biotechnology, as well as to assist in medical decision making. They are in particular important to understand emergent collective cell behavior. For this purpose, the models, despite still abstractions of reality, need to be quantitative in all aspects relevant for the question of interest. This paper considers as showcase example the regeneration of liver after drug-induced depletion of hepatocytes, in which the surviving and dividing hepatocytes must squeeze in between the blood vessels of a network to refill the emerged lesions. Here, the cells’ response to mechanical stress might significantly impact the regeneration process. We present a 3D high-resolution cell-based model integrating information from measurements in order to obtain a refined and quantitative understanding of the impact of cell-biomechanical effects on the closure of drug-induced lesions in liver. Our model represents each cell individually and is constructed by a discrete, physically scalable network of viscoelastic elements, capable of mimicking realistic cell deformation and supplying information at subcellular scales. The cells have the capability to migrate, grow, and divide, and the nature and parameters of their mechanical elements can be inferred from comparisons with optical stretcher experiments. Due to triangulation of the cell surface, interactions of cells with arbitrarily shaped (triangulated) structures such as blood vessels can be captured naturally. Comparing our simulations with those of so-called center-based models, in which cells have a largely rigid shape and forces are exerted between cell centers, we find that the migration forces a cell needs to exert on its environment to close a tissue lesion, is much smaller than predicted by center-based models. To stress generality of the approach, the liver simulations were complemented by monolayer and multicellular spheroid growth simulations. In summary, our model can give quantitative insight in many tissue organization processes, permits hypothesis testing in silico, and guide experiments in situations in which cell mechanics is considered important.
1000 Sacherschließung
lokal cell-based model
lokal cell mechanics
lokal liver regeneration
lokal high resolution cell model
lokal optical stretcher
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VmFuIExpZWRla2Vya2UsUGF1bA==|https://frl.publisso.de/adhoc/uri/IE5laXRzY2gsIEpvaGFubmVz|https://frl.publisso.de/adhoc/uri/Sm9oYW5uLCBUaW0=|https://frl.publisso.de/adhoc/uri/V2FybXQsIEVucmljbyA=|https://frl.publisso.de/adhoc/uri/R29uesOgbGV6LVZhbHZlcmRlLCBJc21hZWw=|https://frl.publisso.de/adhoc/uri/SG9laG1lLCBTdGVmYW4=|https://frl.publisso.de/adhoc/uri/R3Jvc3NlciwgU3RlZmZlbg==|https://frl.publisso.de/adhoc/uri/S2FlcywgSm9zZWY=|https://orcid.org/0000-0002-9995-5987
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. INST. CANCER |
  3. ITMO |
  4. Seventh Framework Programme |
  5. Agence Nationale de la Recherche |
  6. Deutsche Forschungsgemeinschaft |
  7. European Research Council |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
  6. HO 4772/1-1
  7. 741350
1000 Förderprogramm
  1. LiSyM; VLN; Demonstrator Liversimulator
  2. PHYSCANCER
  3. INVADE
  4. NOTOX
  5. iLite
  6. Emmy-Noether
  7. Advanced Grant
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm LiSyM; VLN; Demonstrator Liversimulator
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer INST. CANCER |
    1000 Förderprogramm PHYSCANCER
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer ITMO |
    1000 Förderprogramm INVADE
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Seventh Framework Programme |
    1000 Förderprogramm NOTOX
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm iLite
    1000 Fördernummer -
  6. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm Emmy-Noether
    1000 Fördernummer HO 4772/1-1
  7. 1000 joinedFunding-child
    1000 Förderer European Research Council |
    1000 Förderprogramm Advanced Grant
    1000 Fördernummer 741350
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422692.rdf
1000 Erstellt am 2020-08-21T16:12:16.495+0200
1000 Erstellt von 254
1000 beschreibt frl:6422692
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet Thu Aug 27 13:23:45 CEST 2020
1000 Objekt bearb. Thu Aug 27 13:22:34 CEST 2020
1000 Vgl. frl:6422692
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422692 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source