Download
journal.pcbi.1007990.pdf 2,76MB
WeightNameValue
1000 Titel
  • Using information theory to optimise epidemic models for real-time prediction and estimation
1000 Autor/in
  1. Parag, Kris Varun |
  2. Donnelly, Christl |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-01
1000 Erschienen in
1000 Quellenangabe
  • 16(7):e1007990
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pcbi.1007990 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360089/ |
1000 Ergänzendes Material
  • https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007990#sec010 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The effective reproduction number, Rt, is a key time-varying prognostic for the growth rate of any infectious disease epidemic. Significant changes in Rt can forewarn about new transmissions within a population or predict the efficacy of interventions. Inferring Rt reliably and in real-time from observed time-series of infected (demographic) data is an important problem in population dynamics. The renewal or branching process model is a popular solution that has been applied to Ebola and Zika virus disease outbreaks, among others, and is currently being used to investigate the ongoing COVID-19 pandemic. This model estimates Rt using a heuristically chosen piecewise function. While this facilitates real-time detection of statistically significant Rt changes, inference is highly sensitive to the function choice. Improperly chosen piecewise models might ignore meaningful changes or over-interpret noise-induced ones, yet produce visually reasonable estimates. No principled piecewise selection scheme exists. We develop a practical yet rigorous scheme using the accumulated prediction error (APE) metric from information theory, which deems the model capable of describing the observed data using the fewest bits as most justified. We derive exact posterior prediction distributions for infected population size and integrate these within an APE framework to obtain an exact and reliable method for identifying the piecewise function best supported by available epidemic data. We find that this choice optimises short-term prediction accuracy and can rapidly detect salient fluctuations in Rt, and hence the infected population growth rate, in real-time over the course of an unfolding epidemic. Moreover, we emphasise the need for formal selection by exposing how common heuristic choices, which seem sensible, can be misleading. Our APE-based method is easily computed and broadly applicable to statistically similar models found in phylogenetics and macroevolution, for example. Our results explore the relationships among estimate precision, forecast reliability and model complexity. AUTHOR SUMMARY: Understanding how the population of infected individuals (which may be humans, animals or plants) fluctuates in size over the course of an epidemic is an important problem in epidemiology and ecology. The effective reproduction number, R, provides an intuitive and useful way of describing these fluctuations by characterising the growth rate of the infected population. An R > 1 signifies a burgeoning epidemic whereas R < 1 indicates a declining one. Public health agencies often use R to inform or corroborate vaccination and quarantine policies. However, popular approaches to inferring R from epidemic data make heuristic choices, which may lead to visually reasonable estimates that are deceptive or unreliable. By adapting mathematical tools from information theory, we develop a general and principled scheme for estimating R in a data-justified way. Our method exposes the pitfalls of heuristic estimates and provides an easily computable correction that also maximises our ability to predict upcoming population fluctuations. Our work is widely applicable to similar inference problems found in evolution and genetics, demonstrably useful for reliably analysing emerging epidemics in real time and highlights how abstract mathematical concepts can inspire novel and practical biological solutions, showcasing the importance of multidisciplinary research.
1000 Sacherschließung
lokal Epidemiology
gnd 1206347392 COVID-19
lokal Population dynamics
lokal Infectious disease epidemiology
lokal Influenza
lokal Infectious diseases
lokal SARS
lokal Forecasting
lokal Graphs
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7806-3605|https://orcid.org/0000-0002-0195-2463
1000 Label
1000 Förderer
  1. Medical Research Council |
  2. Department for International Development |
  3. National Institute for Health Research |
  4. Public Health England |
1000 Fördernummer
  1. MR/R015600/1
  2. MR/R015600/1
  3. HPRU-2012–10080
  4. HPRU-2012–10080
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Medical Research Council |
    1000 Förderprogramm -
    1000 Fördernummer MR/R015600/1
  2. 1000 joinedFunding-child
    1000 Förderer Department for International Development |
    1000 Förderprogramm -
    1000 Fördernummer MR/R015600/1
  3. 1000 joinedFunding-child
    1000 Förderer National Institute for Health Research |
    1000 Förderprogramm -
    1000 Fördernummer HPRU-2012–10080
  4. 1000 joinedFunding-child
    1000 Förderer Public Health England |
    1000 Förderprogramm -
    1000 Fördernummer HPRU-2012–10080
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6422759.rdf
1000 Erstellt am 2020-08-25T16:24:13.406+0200
1000 Erstellt von 122
1000 beschreibt frl:6422759
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-08-25T16:26:14.619+0200
1000 Objekt bearb. Tue Aug 25 16:25:56 CEST 2020
1000 Vgl. frl:6422759
1000 Oai Id
  1. oai:frl.publisso.de:frl:6422759 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source