Download
metabolites-09-00222-v2.pdf 2,71MB
WeightNameValue
1000 Titel
  • Chemical Diversity and Classification of Secondary Metabolites in Nine Bryophyte Species
1000 Autor/in
  1. Peters, Kristian |
  2. Treutler, Hendrik |
  3. Döll, Stefanie |
  4. Kindt, Alida |
  5. Hankemeier, Thomas |
  6. Neumann, Steffen |
1000 Erscheinungsjahr 2019
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-10-11
1000 Erschienen in
1000 Quellenangabe
  • 9(19)222
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/metabo9100222 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835487/ |
1000 Ergänzendes Material
  • https://www.mdpi.com/2218-1989/9/10/222#supplementary |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The central aim in ecometabolomics and chemical ecology is to pinpoint chemical features that explain molecular functioning. The greatest challenge is the identification of compounds due to the lack of constitutive reference spectra, the large number of completely unknown compounds, and bioinformatic methods to analyze the big data. In this study we present an interdisciplinary methodological framework that extends ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) and the automated in silico classification of fragment peaks into compound classes. We synthesize findings from a prior study that explored the influence of seasonal variations on the chemodiversity of secondary metabolites in nine bryophyte species. Here we reuse and extend the representative dataset with DDA-MS data. Hierarchical clustering, heatmaps, dbRDA, and ANOVA with post-hoc Tukey HSD were used to determine relationships of the study factors species, seasons, and ecological characteristics. The tested bryophytes showed species-specific metabolic responses to seasonal variations (50% vs. 5% of explained variation). Marchantia polymorpha, Plagiomnium undulatum, and Polytrichum strictum were biochemically most diverse and unique. Flavonoids and sesquiterpenoids were upregulated in all bryophytes in the growing seasons. We identified ecological functioning of compound classes indicating light protection (flavonoids), biotic and pathogen interactions (sesquiterpenoids, flavonoids), low temperature and desiccation tolerance (glycosides, sesquiterpenoids, anthocyanins, lactones), and moss growth supporting anatomic structures (few methoxyphenols and cinnamic acids as part of proto-lignin constituents). The reusable bioinformatic framework of this study can differentiate species based on automated compound classification. Our study allows detailed insights into the ecological roles of biochemical constituents of bryophytes with regard to seasonal variations. We demonstrate that compound classification can be improved with adding constitutive reference spectra to existing spectral libraries. We also show that generalization on compound classes improves our understanding of molecular ecological functioning and can be used to generate new research hypotheses.
1000 Sacherschließung
lokal chemical ecology
lokal ecometabolomics
lokal compound classes
lokal chemodiversity
lokal clustering
lokal biodiversity
lokal massbank
lokal data-dependent acquisition
lokal classification
lokal mosses
lokal bryophytes
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-4321-0257|https://orcid.org/0000-0001-8032-9890|https://orcid.org/0000-0002-0001-8302|https://orcid.org/0000-0001-6551-6030|https://orcid.org/0000-0001-7871-2073|https://orcid.org/0000-0002-7899-7192
1000 Label
1000 Förderer
  1. German Network for Bioinformatics Infrastructure (de.NBI) |
  2. Bundesministerium für Bildung und Forschung |
  3. Leibniz-Gemeinschaft |
1000 Fördernummer
  1. -
  2. 322031L0107
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. Open Access Fund
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer German Network for Bioinformatics Infrastructure (de.NBI) |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer 322031L0107
  3. 1000 joinedFunding-child
    1000 Förderer Leibniz-Gemeinschaft |
    1000 Förderprogramm Open Access Fund
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6423237.rdf
1000 Erstellt am 2020-10-01T12:13:57.817+0200
1000 Erstellt von 288
1000 beschreibt frl:6423237
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2020-12-14T11:17:48.319+0100
1000 Objekt bearb. Mon Dec 14 11:17:47 CET 2020
1000 Vgl. frl:6423237
1000 Oai Id
  1. oai:frl.publisso.de:frl:6423237 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source