Download
hbm.24949.pdf 3,48MB
WeightNameValue
1000 Titel
  • Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks
1000 Autor/in
  1. Sikka, Apoorva |
  2. Jamalabadi, Hamidreza |
  3. Krylova, Marina |
  4. Alizadeh, Sarah |
  5. van der Meer, Johan N. |
  6. Danyeli, Lena |
  7. Deliano, Matthias |
  8. Vicheva, Petya |
  9. Hahn, Tim |
  10. Koenig, Thomas |
  11. Bathula, Deepti |
  12. Walter, Martin |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-21
1000 Erschienen in
1000 Quellenangabe
  • 41(9):2334-2346
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/hbm.24949 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267981/ |
1000 Ergänzendes Material
  • https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.24949 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Electroencephalogram (EEG) microstates that represent quasi‐stable, global neuronal activity are considered as the building blocks of brain dynamics. Therefore, the analysis of microstate sequences is a promising approach to understand fast brain dynamics that underlie various mental processes. Recent studies suggest that EEG microstate sequences are non‐Markovian and nonstationary, highlighting the importance of the sequential flow of information between different brain states. These findings inspired us to model these sequences using Recurrent Neural Networks (RNNs) consisting of long‐short‐term‐memory (LSTM) units to capture the complex temporal dependencies. Using an LSTM‐based auto encoder framework and different encoding schemes, we modeled the microstate sequences at multiple time scales (200–2,000 ms) aiming to capture stably recurring microstate patterns within and across subjects. We show that RNNs can learn underlying microstate patterns with high accuracy and that the microstate trajectories are subject invariant at shorter time scales (≤400 ms) and reproducible across sessions. Significant drop in the reconstruction accuracy was observed for longer sequence lengths of 2,000 ms. These findings indirectly corroborate earlier studies which indicated that EEG microstate sequences exhibit long‐range dependencies with finite memory content. Furthermore, we find that the latent representations learned by the RNNs are sensitive to external stimulation such as stress while the conventional univariate microstate measures (e.g., occurrence, mean duration, etc.) fail to capture such changes in brain dynamics. While RNNs cannot be configured to identify the specific discriminating patterns, they have the potential for learning the underlying temporal dynamics and are sensitive to sequence aberrations characterized by changes in metal processes. Empowered with the macroscopic understanding of the temporal dynamics that extends beyond short‐term interactions, RNNs offer a reliable alternative for exploring system level brain dynamics using EEG microstate sequences.
1000 Sacherschließung
lokal recurrent neural networks
lokal EEG
lokal stress
lokal microstates
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U2lra2EsIEFwb29ydmE=|https://frl.publisso.de/adhoc/uri/SmFtYWxhYmFkaSwgSGFtaWRyZXph|https://frl.publisso.de/adhoc/uri/S3J5bG92YSwgTWFyaW5h|https://frl.publisso.de/adhoc/uri/QWxpemFkZWgsIFNhcmFo|https://frl.publisso.de/adhoc/uri/dmFuIGRlciBNZWVyLCBKb2hhbiBOLg==|https://frl.publisso.de/adhoc/uri/RGFueWVsaSwgTGVuYQ==|https://orcid.org/0000-0003-1792-195X|https://frl.publisso.de/adhoc/uri/VmljaGV2YSwgUGV0eWEg|https://frl.publisso.de/adhoc/uri/SGFobiwgVGltIA==|https://frl.publisso.de/adhoc/uri/S29lbmlnLCBUaG9tYXMg|https://orcid.org/0000-0002-1383-3744|https://orcid.org/0000-0001-7857-4483
1000 Label
1000 Förderer
  1. Biologische Heilmittel HEEL GmbH |
  2. Deutsche Forschungsgemeinschaft |
  3. Interdisziplinäres Zentrum für Klinische Forschung Münster |
  4. Medizinischen Fakultät, Eberhard Karls Universität Tübingen |
1000 Fördernummer
  1. NCT02602275
  2. FOR2107 HA 7070/2‐2; SFB779‐A06; Wa2674/4‐10
  3. Dan3/012/17
  4. 2487‐1‐0
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. Fortune
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Biologische Heilmittel HEEL GmbH |
    1000 Förderprogramm -
    1000 Fördernummer NCT02602275
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer FOR2107 HA 7070/2‐2; SFB779‐A06; Wa2674/4‐10
  3. 1000 joinedFunding-child
    1000 Förderer Interdisziplinäres Zentrum für Klinische Forschung Münster |
    1000 Förderprogramm -
    1000 Fördernummer Dan3/012/17
  4. 1000 joinedFunding-child
    1000 Förderer Medizinischen Fakultät, Eberhard Karls Universität Tübingen |
    1000 Förderprogramm Fortune
    1000 Fördernummer 2487‐1‐0
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6423609.rdf
1000 Erstellt am 2020-10-16T10:18:54.315+0200
1000 Erstellt von 242
1000 beschreibt frl:6423609
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-10-19T09:37:19.046+0200
1000 Objekt bearb. Mon Oct 19 09:07:43 CEST 2020
1000 Vgl. frl:6423609
1000 Oai Id
  1. oai:frl.publisso.de:frl:6423609 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source