Download
1-s2.0-S105381192030687X-main.pdf 4,80MB
WeightNameValue
1000 Titel
  • On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data
1000 Autor/in
  1. Girard, Gabriel |
  2. Caminti, Roberto |
  3. Battaglia-Mayer, Alexandra |
  4. St-Onge, Etienne |
  5. Ambrosen, Karen S. |
  6. Eskildsen, Simon F. |
  7. Krug, Kristine |
  8. Dyrby, Tim B. |
  9. Descoteaux, Maxime |
  10. Thiran, Jean-Philippe |
  11. Innocenti, Giorgio M. |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-07-30
1000 Erschienen in
1000 Quellenangabe
  • 221:117201
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.neuroimage.2020.117201 |
1000 Ergänzendes Material
  • https://www.sciencedirect.com/science/article/pii/S105381192030687X?via%3Dihub#sec0019 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Diffusion-weighted magnetic resonance imaging (DW-MRI) tractography is a non-invasive tool to probe neural connections and the structure of the white matter. It has been applied successfully in studies of neurological disorders and normal connectivity. Recent work has revealed that tractography produces a high incidence of false-positive connections, often from "bottleneck" white matter configurations. The rich literature in histological connectivity analysis studies in the macaque monkey enables quantitative evaluation of the performance of tractography algorithms. In this study, we use the intricate connections of frontal, cingulate, and parietal areas, well established by the anatomical literature, to derive a symmetrical histological connectivity matrix composed of 59 cortical areas. We evaluate the performance of fifteen diffusion tractography algorithms, including global, deterministic, and probabilistic state-of-the-art methods for the connectivity predictions of 1711 distinct pairs of areas, among which 680 are reported connected by the literature. The diffusion connectivity analysis was performed on a different ex-vivo macaque brain, acquired using multi-shell DW-MRI protocol, at high spatial and angular resolutions. Across all tested algorithms, the true-positive and true-negative connections were dominant over false-positive and false-negative connections, respectively. Moreover, three-quarters of streamlines had endpoints location in agreement with histological data, on average. Furthermore, probabilistic streamline tractography algorithms show the best performances in predicting which areas are connected. Altogether, we propose a method for quantitative evaluation of tractography algorithms, which aims at improving the sensitivity and the specificity of diffusion-based connectivity analysis. Overall, those results confirm the usefulness of tractography in predicting connectivity, although errors are produced. Many of the errors result from bottleneck white matter configurations near the cortical grey matter and should be the target of future implementation of methods.
1000 Sacherschließung
lokal Connectivity
lokal Histological tracing
lokal Parieto-frontal network
lokal White matter
lokal Ex-vivo
lokal Tractography
lokal Diffusion MRI
lokal Macaque monkey
lokal Cortico-cortical
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/R2lyYXJkLCBHYWJyaWVs|https://frl.publisso.de/adhoc/uri/Q2FtaW50aSwgUm9iZXJ0bw==|https://frl.publisso.de/adhoc/uri/QmF0dGFnbGlhLU1heWVyLCBBbGV4YW5kcmE=|https://frl.publisso.de/adhoc/uri/U3QtT25nZSwgRXRpZW5uZQ==|https://frl.publisso.de/adhoc/uri/QW1icm9zZW4sIEthcmVuIFMu|https://frl.publisso.de/adhoc/uri/RXNraWxkc2VuLCBTaW1vbiBGLg==|https://orcid.org/0000-0001-7119-9350|https://frl.publisso.de/adhoc/uri/RHlyYnksIFRpbSBCLg==|https://frl.publisso.de/adhoc/uri/RGVzY290ZWF1eCwgTWF4aW1l|https://frl.publisso.de/adhoc/uri/VGhpcmFuLCBKZWFuLVBoaWxpcHBl|https://frl.publisso.de/adhoc/uri/SW5ub2NlbnRpLCBHaW9yZ2lvIE0u
1000 Label
1000 Förderer
  1. Centre d'Imagerie BioMédicale |
  2. Fondation Leenaards |
  3. Louis-Jeantet Foundation |
  4. Istituto Italiano di Tecnologia |
  5. Ministero dell’Istruzione, dell’Università e della Ricerca |
  6. Deutsche Forschungsgemeinschaft |
  7. École Polytechnique Fédérale de Lausanne |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. 000000247
  5. AWSW2Y_002; 94KEER_002
  6. 406269671
  7. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. PRIN 2015; PRIN 2017
  6. Heisenberg Professorship
  7. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Centre d'Imagerie BioMédicale |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fondation Leenaards |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Louis-Jeantet Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Istituto Italiano di Tecnologia |
    1000 Förderprogramm -
    1000 Fördernummer 000000247
  5. 1000 joinedFunding-child
    1000 Förderer Ministero dell’Istruzione, dell’Università e della Ricerca |
    1000 Förderprogramm PRIN 2015; PRIN 2017
    1000 Fördernummer AWSW2Y_002; 94KEER_002
  6. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm Heisenberg Professorship
    1000 Fördernummer 406269671
  7. 1000 joinedFunding-child
    1000 Förderer École Polytechnique Fédérale de Lausanne |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6424214.rdf
1000 Erstellt am 2020-11-12T10:29:25.965+0100
1000 Erstellt von 242
1000 beschreibt frl:6424214
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2021-10-01T16:56:51.383+0200
1000 Objekt bearb. Fri Oct 01 16:56:51 CEST 2021
1000 Vgl. frl:6424214
1000 Oai Id
  1. oai:frl.publisso.de:frl:6424214 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source