Download
fpsyt-09-00512.pdf 1018,51KB
WeightNameValue
1000 Titel
  • Understanding and Predicting Antidepressant Response: Using Animal Models to Move Toward Precision Psychiatry
1000 Autor/in
  1. Herzog, David P. |
  2. Beckmann, Holger |
  3. Lieb, Klaus |
  4. Ryu, Soojin |
  5. Müller, Marianne B. |
1000 Erscheinungsjahr 2018
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2018-10-22
1000 Erschienen in
1000 Quellenangabe
  • 9:512
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2018
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fpsyt.2018.00512 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204461/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • There are two important gaps of knowledge in depression treatment, namely the lack of biomarkers predicting response to antidepressants and the limited knowledge of the molecular mechanisms underlying clinical improvement. However, individually tailored treatment strategies and individualized prescription are greatly needed given the huge socio-economic burden of depression, the latency until clinical improvement can be observed and the response variability to a particular compound. Still, individual patient-level antidepressant treatment outcomes are highly unpredictable. In contrast to other therapeutic areas and despite tremendous efforts during the past years, the genomics era so far has failed to provide biological or genetic predictors of clinical utility for routine use in depression treatment. Specifically, we suggest to (1) shift the focus from the group patterns to individual outcomes, (2) use dimensional classifications such as Research Domain Criteria, and (3) envision better planning and improved connections between pre-clinical and clinical studies within translational research units. In contrast to studies in patients, animal models enable both searches for peripheral biosignatures predicting treatment response and in depth-analyses of the neurobiological pathways shaping individual antidepressant response in the brain. While there is a considerable number of animal models available aiming at mimicking disease-like conditions such as those seen in depressive disorder, only a limited number of preclinical or truly translational investigations is dedicated to the issue of heterogeneity seen in response to antidepressant treatment. In this mini-review, we provide an overview on the current state of knowledge and propose a framework for successful translational studies into antidepressant treatment response.
1000 Sacherschließung
lokal response
lokal response prediction
lokal antidepressant
lokal translational medicine
lokal depression
lokal non-response
lokal animal model
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SGVyem9nLCBEYXZpZCBQLg==|https://frl.publisso.de/adhoc/uri/QmVja21hbm4sIEhvbGdlcg==|https://orcid.org/0000-0002-9609-4261|https://orcid.org/0000-0002-7059-0160|https://frl.publisso.de/adhoc/uri/TcO8bGxlciwgTWFyaWFubmUgQi4=
1000 Label
1000 Förderer
  1. Universitätsmedizin der Johannes Gutenberg-Universität Mainz |
  2. Deutsche Forschungsgemeinschaft |
  3. Boehringer Ingelheim Stiftung |
  4. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. -
  2. CRC1193
  3. -
  4. 01GQ140
1000 Förderprogramm
  1. Mainz Research School of Translational Biomedicine (TransMed)
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsmedizin der Johannes Gutenberg-Universität Mainz |
    1000 Förderprogramm Mainz Research School of Translational Biomedicine (TransMed)
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer CRC1193
  3. 1000 joinedFunding-child
    1000 Förderer Boehringer Ingelheim Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer 01GQ140
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6424556.rdf
1000 Erstellt am 2020-12-01T13:05:29.818+0100
1000 Erstellt von 122
1000 beschreibt frl:6424556
1000 Bearbeitet von 122
1000 Zuletzt bearbeitet 2020-12-01T13:08:18.239+0100
1000 Objekt bearb. Tue Dec 01 13:07:40 CET 2020
1000 Vgl. frl:6424556
1000 Oai Id
  1. oai:frl.publisso.de:frl:6424556 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source