Download
s41598-020-74705-6.pdf 2,75MB
WeightNameValue
1000 Titel
  • Finding disease modules for cancer and COVID-19 in gene co-expression networks with the Core&Peel method
1000 Autor/in
  1. Lucchetta, Marta |
  2. Pellegrini, Marco |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-10-19
1000 Erschienen in
1000 Quellenangabe
  • 10:17628
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41598-020-74705-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573595/ |
1000 Ergänzendes Material
  • https://www.nature.com/articles/s41598-020-74705-6#Sec35 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Genes are organized in functional modules (or pathways), thus their action and their dysregulation in diseases may be better understood by the identification of the modules most affected by the disease (aka disease modules, or active subnetworks). We describe how an algorithm based on the Core&Peel method is used to detect disease modules in co-expression networks of genes. We first validate Core&Peel for the general task of functional module detection by comparison with 42 methods participating in the Disease Module Identification DREAM challenge. Next, we use four specific disease test cases (colorectal cancer, prostate cancer, asthma, and rheumatoid arthritis), four state-of-the-art algorithms (ModuleDiscoverer, Degas, KeyPathwayMiner, and ClustEx), and several pathway databases to validate the proposed algorithm. Core&Peel is the only method able to find significant associations of the predicted disease module with known validated relevant pathways for all four diseases. Moreover, for the two cancer datasets, Core&Peel detects further eight relevant pathways not discovered by the other methods used in the comparative analysis. Finally, we apply Core&Peel and other methods to explore the transcriptional response of human cells to SARS-CoV-2 infection, finding supporting evidence for drug repositioning efforts at a pre-clinical level.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Computational biology and bioinformatics
lokal Diseases
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/THVjY2hldHRhLCBNYXJ0YQ==|https://frl.publisso.de/adhoc/uri/UGVsbGVncmluaSwgTWFyY28=
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6425406.rdf
1000 Erstellt am 2021-01-28T09:51:06.125+0100
1000 Erstellt von 5
1000 beschreibt frl:6425406
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-02-11T07:40:45.932+0100
1000 Objekt bearb. Thu Feb 11 07:40:29 CET 2021
1000 Vgl. frl:6425406
1000 Oai Id
  1. oai:frl.publisso.de:frl:6425406 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source