Download
fsn3.1043.pdf 912,03KB
WeightNameValue
1000 Titel
  • Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique
1000 Autor/in
  1. khoshnoudi, sara |
  2. moosavi-nasab, marzieh |
1000 Erscheinungsjahr 2019
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-04-24
1000 Erschienen in
1000 Quellenangabe
  • 7(5):1875-1883
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/fsn3.1043 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This study explores the potential application of hyperspectral imaging (HSI; 430–1,010 nm) coupled with different linear and nonlinear models for rapid nondestructive evaluation of thiobarbituric acid‐reactive substances (TBARS) value in rainbow trout (Oncorhynchus mykiss) fillets during 12 days of cold storage (4 ± 2°C). HSI data and TBARS value of fillets were obtained in the laboratory. The primary prediction models were established based on linear partial least squares regression (PLSR) and least squares support vector machine (LS‐SVM). In full spectral range, the prediction capability of LS‐SVM (urn:x-wiley:20487177:media:fsn31043:fsn31043-math-0001 = 0.829; RMSEP = 0.128 mg malondialdehyde [MDA]/kg) was better than PLSR (urn:x-wiley:20487177:media:fsn31043:fsn31043-math-0002 = 0.748; RMSEP = 0.155 mg MDA/kg) model and LS‐SVM model exhibited satisfactory prediction performance (urn:x-wiley:20487177:media:fsn31043:fsn31043-math-0003 > 0.82). To simplify the calibration models, a combination of uninformative variable elimination and backward regression (UB) was used as variable selection. Nine wavelengths were selected. Various chemometric analysis methods including linear PLSR and multiple linear regression and nonlinear LS‐SVM and back‐propagation artificial neural network (BP‐ANN) were compared. The simplified models showed better capability than those were built based on the whole dataset in prediction of TBARS values. Moreover, the nonlinear models were preferred over linear models. Among the four chemometric algorithms, the best and weakest models were LS‐SVM and PLSR model, respectively. UB‐LS‐SVM model was the optimal models for predicting TBARS value in rainbow trout fillets (urn:x-wiley:20487177:media:fsn31043:fsn31043-math-0004 = 0.831; RMSEP = 0.125 mg MDA/kg). The establishing of lipid‐oxidation prediction model in rainbow trout fish was complicated, due to the fluctuations of TBARS values during storage. Therefore, further researches are needed to improve the prediction results and applicability of HIS technique for prediction of TBARS value in rainbow trout fish.
1000 Sacherschließung
lokal lipid oxidation
lokal nonlinear regression
lokal linear regression
lokal rainbow trout fish
lokal malondialdehyde
lokal chemometric analysis
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-6989-9366|https://orcid.org/0000-0002-3265-5226
1000 Label
1000 Förderer
  1. Shiraz University |
  2. Ala Health‐based Food Processing and Biotechnology Co |
1000 Fördernummer
  1. GR-AGR-56
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Shiraz University |
    1000 Förderprogramm -
    1000 Fördernummer GR-AGR-56
  2. 1000 joinedFunding-child
    1000 Förderer Ala Health‐based Food Processing and Biotechnology Co |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6425777.rdf
1000 Erstellt am 2021-02-23T11:10:19.833+0100
1000 Erstellt von 286
1000 beschreibt frl:6425777
1000 Bearbeitet von 286
1000 Zuletzt bearbeitet 2021-02-23T11:11:49.402+0100
1000 Objekt bearb. Tue Feb 23 11:11:13 CET 2021
1000 Vgl. frl:6425777
1000 Oai Id
  1. oai:frl.publisso.de:frl:6425777 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source