Download
Andrews_BIPS_33512846_Postprint.pdf 782,37KB
WeightNameValue
1000 Titel
  • Insights into the Cross-world Independence Assumption of Causal Mediation Analysis
1000 Autor/in
  1. Andrews, Ryan |
  2. Didelez, Vanessa |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-12-30
1000 Erschienen in
1000 Quellenangabe
  • 32(2):209-219
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2021
1000 Embargo
  • 2021-12-30
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1097/EDE.0000000000001313 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Causal mediation analysis is a useful tool for epidemiologic research, but it has been criticized for relying on a “cross-world” independence assumption that counterfactual outcome and mediator values are independent even in causal worlds where the exposure assignments for the outcome and mediator differ. This assumption is empirically difficult to verify and problematic to justify based on background knowledge. In the present article, we aim to assist the applied researcher in understanding this assumption. Synthesizing what is known about the cross-world independence assumption, we discuss the relationship between assumptions for causal mediation analyses, causal models, and nonparametric identification of natural direct and indirect effects. In particular, we give a practical example of an applied setting where the cross-world independence assumption is violated even without any post-treatment confounding. Further, we review possible alternatives to the cross-world independence assumption, including the use of bounds that avoid the assumption altogether. Finally, we carry out a numeric study in which the cross-world independence assumption is violated to assess the ensuing bias in estimating natural direct and indirect effects. We conclude with recommendations for carrying out causal mediation analyses.
1000 Sacherschließung
lokal Causal inference
lokal Natural indirect effects
lokal Causal directed acyclic graphs
lokal Natural direct effects
lokal Epidemiologic methods
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7750-2397|https://orcid.org/0000-0001-8587-7706
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Nutzungsvereinbarung
  2. Wolters_self-archiving-policy
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6425953.rdf
1000 Erstellt am 2021-03-04T13:47:28.133+0100
1000 Erstellt von 266
1000 beschreibt frl:6425953
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-01-05T14:37:14.866+0100
1000 Objekt bearb. Wed Jan 05 14:37:14 CET 2022
1000 Vgl. frl:6425953
1000 Oai Id
  1. oai:frl.publisso.de:frl:6425953 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source