Download
s41598-020-79092-6.pdf 1,08MB
WeightNameValue
1000 Titel
  • COVID-19 cycles and rapidly evaluating lockdown strategies using spectral analysis
1000 Autor/in
  1. Nason, Guy P. |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-12-17
1000 Erschienen in
1000 Quellenangabe
  • 10:22134
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41598-020-79092-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747697/ |
1000 Ergänzendes Material
  • https://www.nature.com/articles/s41598-020-79092-6#appendices |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Spectral analysis characterises oscillatory time series behaviours such as cycles, but accurate estimation requires reasonable numbers of observations. At the time of writing, COVID-19 time series for many countries are short: pre- and post-lockdown series are shorter still. Accurate estimation of potentially interesting cycles seems beyond reach with such short series. We solve the problem of obtaining accurate estimates from short series by using recent Bayesian spectral fusion methods. We show that transformed daily COVID-19 cases for many countries generally contain three cycles operating at wavelengths of around 2.7, 4.1 and 6.7 days (weekly) and that shorter wavelength cycles are suppressed after lockdown. The pre- and post-lockdown differences suggest that the weekly effect is at least partly due to non-epidemic factors. Unconstrained, new cases grow exponentially, but the internal cyclic structure causes periodic declines. This suggests that lockdown success might only be indicated by four or more daily falls. Spectral learning for epidemic time series contributes to the understanding of the epidemic process and can help evaluate interventions. Spectral fusion is a general technique that can fuse spectra recorded at different sampling rates, which can be applied to a wide range of time series from many disciplines.
1000 Sacherschließung
lokal Epidemiology
gnd 1206347392 COVID-19
lokal Statistics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TmFzb24sIEd1eSBQLg==
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6426019.rdf
1000 Erstellt am 2021-03-09T10:17:20.741+0100
1000 Erstellt von 5
1000 beschreibt frl:6426019
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-05-07T08:40:01.297+0200
1000 Objekt bearb. Fri May 07 08:39:02 CEST 2021
1000 Vgl. frl:6426019
1000 Oai Id
  1. oai:frl.publisso.de:frl:6426019 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source