Download
fsn3.1160.pdf 2,13MB
WeightNameValue
1000 Titel
  • Optimization of butter, xylitol, and high‐amylose maize flour on developing a low‐sugar cookie
1000 Autor/in
  1. Song, Yunxian |
  2. Li, Xu |
  3. Zhong, Yuyue |
1000 Erscheinungsjahr 2019
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2019-09-18
1000 Erschienen in
1000 Quellenangabe
  • 7(11):3414-3424
1000 Copyrightjahr
  • 2019
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/fsn3.1160 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • There is a huge interest to develop low‐sugar baked products for reducing risks of some diseases, such as adiposis, diabetes, and high blood pressure. A low‐sugar cookie was prepared with butter, xylitol, and high‐amylose maize flour (HAMF) through response surface methodology. ANOVA of models for sensory profiles, texture, and digestibility showed the models for sensory attributes, hardness, and resistant starch were significant (p < .05), indicating the reliability of these models. Sensory profiles of cookie were mainly affected by butter and xylitol, while HAMF was not significant. Hardness was negatively related to butter and HAMF. Resistant starch (RS) content was positively correlated with butter, xylitol, and HAMF. The improvement of RS was attributed to high proportions of long amylopectin and amylose chains of starch in HAMF and interactions of starch with butter and xylitol. The predicted model showed the optimal combination of a cookie with the highest sensory and resistant starch and the lowest hardness was intermediate butter, high xylitol, and high HAMF contents.
1000 Sacherschließung
lokal high‐amylose maize flour
lokal butter
lokal low‐sugar cookie
lokal response surface methodology
lokal xylitol
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U29uZywgWXVueGlhbg==|https://frl.publisso.de/adhoc/uri/TGksIFh1|https://orcid.org/0000-0001-7948-2978
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
  2. Natural Science Foundation of the Educational Commission of Anhui Province |
1000 Fördernummer
  1. 31640069
  2. KJ2013A232
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer 31640069
  2. 1000 joinedFunding-child
    1000 Förderer Natural Science Foundation of the Educational Commission of Anhui Province |
    1000 Förderprogramm -
    1000 Fördernummer KJ2013A232
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6427087.rdf
1000 Erstellt am 2021-04-28T12:47:37.020+0200
1000 Erstellt von 286
1000 beschreibt frl:6427087
1000 Bearbeitet von 286
1000 Zuletzt bearbeitet 2021-04-28T12:48:58.966+0200
1000 Objekt bearb. Wed Apr 28 12:48:31 CEST 2021
1000 Vgl. frl:6427087
1000 Oai Id
  1. oai:frl.publisso.de:frl:6427087 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source