Download
2020.09.07.285510v3.full.pdf 547,38KB
WeightNameValue
1000 Titel
  • Capturing biodiversity complexities while accounting for imperfect detection: the application of occupancy-based diversity profiles
1000 Titelzusatz
  • Occupancy-based diversity profiles
1000 Autor/in
  1. Abrams, Jesse |
  2. Sollmann, Rahel |
  3. Mitchell, Simon |
  4. struebig, matthew |
  5. Wilting, Andreas |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-10-09
1000 Erschienen in
1000 FRL-Sammlung
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1101/2020.09.07.285510 |
1000 Interne Referenz
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • (1) Measuring the multidimensional diversity properties of a community is of great importance for ecologists, conservationists and stakeholders. Diversity profiles, a plotted series of Hill numbers, simultaneously capture all the common diversity indices. However, diversity metrics require information on species abundance. They often rely on raw count data without accounting for imperfect and varying detection, although detectability can vary between species and study sites. Hierarchical occupancy models explicitly account for variation in detectability, and Hill numbers have been expanded to allow estimation based on occupancy probability. But agreement between occupancy and abundance-based diversity profiles has not been investigated. (2) Here, we fit community occupancy models to simulated animal communities to explore how well occupancy-based diversity profiles reflect true abundance-based diversity. Because we expect occupancy-based diversity to be overestimated, we further tested a novel occupancy thresholding approach to reduce potential biases in the estimated diversity profiles. Finally, we use empirical data from a megadiverse bird community to present how the framework can be extended to consider trait or phylogeny-based similarity when calculating diversity profiles. (3) The simulation study showed that occupancy-based diversity profiles produced among-community patterns in diversity similar to true abundance diversity profiles, although within-community diversity was overestimated with the exception of richness. While applying an occupancy threshold reduced this positive bias, this resulted in negative bias in species richness estimates and slightly reduced the ability to reproduce true differences among the simulated communities. Application of our approach to a large bird dataset revealed differential diversity patterns in communities of different habitat types. Accounting for phylogenetic and ecological similarities between species reduced diversity and its variability among habitats. (4) Our framework allows investigating the complexity of diversity for incidence data, while accounting for imperfect and varying detection probabilities, as well as species similarities. Visualizing results in the form of diversity profiles facilitates comparison of diversity between sites or across time. Therefore, our extension to the diversity profile framework will be a useful tool for studying and monitoring biodiversity.
1000 Sacherschließung
lokal Diversity index
lokal presence
lokal threshold
lokal Biodiversity
lokal species distribution modeling
lokal Diversity profile
lokal occupancy
lokal specificity
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-0411-8519|https://orcid.org/0000-0002-1607-2039|https://orcid.org/0000-0001-8826-4868|https://orcid.org/0000-0003-2058-8502|https://orcid.org/0000-0001-5073-9186
1000 Hinweis
  • This is the preprint version. To view the final publication, please visit https://doi.org/10.1111/ecog.05577. Alternatively, you can also access the full text in this repository at https://repository.publisso.de/resource/frl%3A6427337
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Leibniz-Institut für Zoo- und Wildtierforschung |
  3. Natural Environment Research Council |
  4. University of Kent |
1000 Fördernummer
  1. 01LN1301A; 01LC1703A
  2. -
  3. NE/K016407/1
  4. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer 01LN1301A; 01LC1703A
  2. 1000 joinedFunding-child
    1000 Förderer Leibniz-Institut für Zoo- und Wildtierforschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Natural Environment Research Council |
    1000 Förderprogramm -
    1000 Fördernummer NE/K016407/1
  4. 1000 joinedFunding-child
    1000 Förderer University of Kent |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6427345.rdf
1000 Erstellt am 2021-05-07T14:09:36.740+0200
1000 Erstellt von 25
1000 beschreibt frl:6427345
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-09-13T13:57:30.644+0200
1000 Objekt bearb. Mon Sep 13 13:57:30 CEST 2021
1000 Vgl. frl:6427345
1000 Oai Id
  1. oai:frl.publisso.de:frl:6427345 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source