Download
pone.0240878.pdf 2,81MB
WeightNameValue
1000 Titel
  • A social network model of COVID-19
1000 Autor/in
  1. Karaivanov, Alexander |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-10-29
1000 Erschienen in
1000 Quellenangabe
  • 15(10):e0240878
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0240878 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595335 |
1000 Ergänzendes Material
  • https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240878#sec025 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • I construct a dynamic social-network model of the COVID-19 epidemic which embeds the SIR epidemiological model onto a graph of person-to-person interactions. The standard SIR framework assumes uniform mixing of infectious persons in the population. This abstracts from important elements of realism and locality: (i) people are more likely to interact with members of their social networks and (ii) health and economic policies can affect differentially the rate of viral transmission via a person’s social network vs. the population as a whole. The proposed network-augmented (NSIR) model allows the evaluation, via simulations, of (i) health and economic policies and outcomes for all or subset of the population: lockdown/distancing, herd immunity, testing, contact tracing; (ii) behavioral responses and/or imposing or lifting policies at specific times or conditional on observed states. I find that viral transmission over a network-connected population can proceed slower and reach lower peak than transmission via uniform mixing. Network connections introduce uncertainty and path dependence in the epidemic dynamics, with a significant role for bridge links and superspreaders. Testing and contact tracing are more effective in the network model. If lifted early, distancing policies mostly shift the infection peak into the future, with associated economic costs. Delayed or intermittent interventions or endogenous behavioral responses generate a multi-peaked infection curve, a form of ‘curve flattening’, but may have costlier economic consequences by prolonging the epidemic duration.
1000 Sacherschließung
lokal Economic agents
gnd 1206347392 COVID-19
lokal Health care policy
lokal Infectious disease epidemiology
lokal Social networks
lokal Simulation and modeling
lokal Health economics
lokal Death rates
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-5184-3126
1000 (Academic) Editor
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. A social network model of COVID-19
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6428377.rdf
1000 Erstellt am 2021-06-28T08:39:14.631+0200
1000 Erstellt von 5
1000 beschreibt frl:6428377
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-07-21T15:32:40.237+0200
1000 Objekt bearb. Wed Jul 21 15:32:20 CEST 2021
1000 Vgl. frl:6428377
1000 Oai Id
  1. oai:frl.publisso.de:frl:6428377 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source