Download
Kappenberg2020_Article_HandlingDeviatingControlValues.pdf 3,40MB
WeightNameValue
1000 Titel
  • Handling deviating control values in concentration-response curves
1000 Autor/in
  1. Kappenberg, Franziska |
  2. Brecklinghaus, Tim |
  3. Albrecht, Wiebke |
  4. Blum, Jonathan |
  5. van der Wurp, Carola |
  6. Leist, Marcel |
  7. Hengstler, Jan |
  8. Rahnenführer, Jörg |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-09-23
1000 Erschienen in
1000 Quellenangabe
  • 94:3787-3798
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00204-020-02913-0 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603474/ |
1000 Ergänzendes Material
  • https://link.springer.com/article/10.1007%2Fs00204-020-02913-0#Sec95555 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC20 values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.
1000 Sacherschließung
lokal 4pLL model
lokal Simulation study
lokal Concentration-response curve
lokal Dose-response curve
lokal Viability assay
lokal Deviating controls
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8066-5333|https://orcid.org/0000-0001-6650-9166|https://frl.publisso.de/adhoc/uri/QWxicmVjaHQsIFdpZWJrZQ==|https://frl.publisso.de/adhoc/uri/Qmx1bSwgSm9uYXRoYW4=|https://frl.publisso.de/adhoc/uri/dmFuIGRlciBXdXJwLCBDYXJvbGE=|https://orcid.org/0000-0002-3778-8693|https://orcid.org/0000-0002-1427-5246|https://orcid.org/0000-0002-8947-440X
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Horizon 2020 Framework Programme |
  3. Projekt DEAL |
1000 Fördernummer
  1. 031L0117; 031L0119
  2. 681002; 825759
  3. -
1000 Förderprogramm
  1. SysDT; LivSysTransfer
  2. EU-ToxRisk; ENDpoiNTs
  3. Open Access Fund
1000 Dateien
  1. Handling deviating control values in concentration-response curves
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm SysDT; LivSysTransfer
    1000 Fördernummer 031L0117; 031L0119
  2. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 Framework Programme |
    1000 Förderprogramm EU-ToxRisk; ENDpoiNTs
    1000 Fördernummer 681002; 825759
  3. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm Open Access Fund
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6428549.rdf
1000 Erstellt am 2021-07-16T11:56:35.756+0200
1000 Erstellt von 254
1000 beschreibt frl:6428549
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2021-07-19T15:39:35.343+0200
1000 Objekt bearb. Mon Jul 19 15:39:22 CEST 2021
1000 Vgl. frl:6428549
1000 Oai Id
  1. oai:frl.publisso.de:frl:6428549 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source