Download
Gaidzik2021_Article_HemodynamicDataAssimilationInA.pdf 2,18MB
WeightNameValue
1000 Titel
  • Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry
1000 Autor/in
  1. Gaidzik, Franziska |
  2. Pathiraja, Sahani |
  3. Saalfeld, Sylvia |
  4. Stucht, Daniel |
  5. Speck, Oliver |
  6. Thévenin, Dominique |
  7. Janiga, Gábor |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-09-24
1000 Erschienen in
1000 Quellenangabe
  • 31(3):643-651
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00062-020-00959-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463518/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • PURPOSE: The anatomy of the circle of Willis (CoW), the brain's main arterial blood supply system, strongly differs between individuals, resulting in highly variable flow fields and intracranial vascularization patterns. To predict subject-specific hemodynamics with high certainty, we propose a data assimilation (DA) approach that merges fully 4D phase-contrast magnetic resonance imaging (PC-MRI) data with a numerical model in the form of computational fluid dynamics (CFD) simulations. METHODS: To the best of our knowledge, this study is the first to provide a transient state estimate for the three-dimensional velocity field in a subject-specific CoW geometry using DA. High-resolution velocity state estimates are obtained using the local ensemble transform Kalman filter (LETKF). RESULTS: Quantitative evaluation shows a considerable reduction (up to 90%) in the uncertainty of the velocity field state estimate after the data assimilation step. Velocity values in vessel areas that are below the resolution of the PC-MRI data (e.g., in posterior communicating arteries) are provided. Furthermore, the uncertainty of the analysis-based wall shear stress distribution is reduced by a factor of 2 for the data assimilation approach when compared to the CFD model alone. CONCLUSION: This study demonstrates the potential of data assimilation to provide detailed information on vascular flow, and to reduce the uncertainty in such estimates by combining various sources of data in a statistically appropriate fashion.
1000 Sacherschließung
lokal CFD
lokal Hemodynamics
lokal LETKF
lokal PC-MRI
lokal Uncertainty Quantification
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-1924-821X|https://orcid.org/0000-0002-0114-3164|https://orcid.org/0000-0002-7002-7917|https://frl.publisso.de/adhoc/uri/U3R1Y2h0LCBEYW5pZWw=|https://orcid.org/0000-0002-6019-5597|https://orcid.org/0000-0001-7599-9574|https://orcid.org/0000-0002-4560-9640
1000 Label
1000 Förderer
  1. European Structural and Investment Funds |
  2. Ministerium für Wirtschaft, Wissenschaft und Digitalisierung |
  3. Deutsche Forschungsgemeinschaft |
  4. Projekt DEAL |
1000 Fördernummer
  1. ZS/2016/08/80646
  2. I 117
  3. SFB1294/1–318763901; SA 3461/2-1
  4. -
1000 Förderprogramm
  1. Sachsen-Anhalt WISSENSCHAFT Internationalisierung
  2. Forschungscampus STIMULATE
  3. -
  4. Open Access Funding
1000 Dateien
  1. Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Structural and Investment Funds |
    1000 Förderprogramm Sachsen-Anhalt WISSENSCHAFT Internationalisierung
    1000 Fördernummer ZS/2016/08/80646
  2. 1000 joinedFunding-child
    1000 Förderer Ministerium für Wirtschaft, Wissenschaft und Digitalisierung |
    1000 Förderprogramm Forschungscampus STIMULATE
    1000 Fördernummer I 117
  3. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer SFB1294/1–318763901; SA 3461/2-1
  4. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm Open Access Funding
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6429676.rdf
1000 Erstellt am 2021-10-04T11:27:51.901+0200
1000 Erstellt von 242
1000 beschreibt frl:6429676
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2021-10-11T13:40:26.566+0200
1000 Objekt bearb. Mon Oct 11 12:52:16 CEST 2021
1000 Vgl. frl:6429676
1000 Oai Id
  1. oai:frl.publisso.de:frl:6429676 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source