Download
Rezaei2021_Article_TheUseOfRemoteSensingToDeriveM.pdf 1,91MB
WeightNameValue
1000 Titel
  • The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations
1000 Autor/in
  1. Eyshi Rezaei, Ehsan |
  2. Ghazaryan,Gohar |
  3. González, Javier |
  4. Cornish, Natalie |
  5. Dubovyk, Olena |
  6. Siebert, Stefan |
1000 Erscheinungsjahr 2020
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-11-30
1000 Erschienen in
1000 Quellenangabe
  • 65:565–576
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00484-020-02050-4 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • One of the major sources of uncertainty in large-scale crop modeling is the lack of information capturing the spatiotemporal variability of crop sowing dates. Remote sensing can contribute to reducing such uncertainties by providing essential spatial and temporal information to crop models and improving the accuracy of yield predictions. However, little is known about the impacts of the differences in crop sowing dates estimated by using remote sensing (RS) and other established methods, the uncertainties introduced by the thresholds used in these methods, and the sensitivity of simulated crop yields to these uncertainties in crop sowing dates. In the present study, we performed a systematic sensitivity analysis using various scenarios. The LINTUL-5 crop model implemented in the SIMPLACE modeling platform was applied during the period 2001–2016 to simulate maize yields across four provinces in South Africa using previously defined scenarios of sowing dates. As expected, the selected methodology and the selected threshold considerably influenced the estimated sowing dates (up to 51 days) and resulted in differences in the long-term mean maize yield reaching up to 1.7 t ha−1 (48% of the mean yield) at the province level. Using RS-derived sowing date estimations resulted in a better representation of the yield variability in space and time since the use of RS information not only relies on precipitation but also captures the impacts of socioeconomic factors on the sowing decision, particularly for smallholder farmers. The model was not able to reproduce the observed yield anomalies in Free State (Pearson correlation coefficient: 0.16 to 0.23) and Mpumalanga (Pearson correlation coefficient: 0.11 to 0.18) in South Africa when using fixed and precipitation rule-based sowing date estimations. Further research with high-resolution climate and soil data and ground-based observations is required to better understand the sources of the uncertainties in RS information and to test whether the results presented herein can be generalized among crop models with different levels of complexity and across distinct field crops.
1000 Sacherschließung
lokal Drought
lokal MODIS
lokal Maize
lokal Crop modeling
lokal South Africa
lokal Remote sensing
lokal Sowing date
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2603-8034|https://frl.publisso.de/adhoc/uri/R2hhemFyeWFuLEdvaGFyIA==|https://frl.publisso.de/adhoc/uri/R29uesOhbGV6LCBKYXZpZXI=|https://frl.publisso.de/adhoc/uri/Q29ybmlzaCwgTmF0YWxpZQ==|https://frl.publisso.de/adhoc/uri/RHVib3Z5aywgT2xlbmE=|https://frl.publisso.de/adhoc/uri/U2llYmVydCwgU3RlZmFu
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
1000 Fördernummer
  1. 02WGR1457A; 02WGR1457D; 02WGR1457F
1000 Förderprogramm
  1. GlobeDrough
1000 Dateien
  1. The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm GlobeDrough
    1000 Fördernummer 02WGR1457A; 02WGR1457D; 02WGR1457F
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6430295.rdf
1000 Erstellt am 2021-11-18T07:59:44.998+0100
1000 Erstellt von 317
1000 beschreibt frl:6430295
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2021-11-18T08:00:47.298+0100
1000 Objekt bearb. Thu Nov 18 08:00:34 CET 2021
1000 Vgl. frl:6430295
1000 Oai Id
  1. oai:frl.publisso.de:frl:6430295 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source