Download
document (6).pdf 152,16KB
WeightNameValue
1000 Titel
  • Impact Of Tissue Sampling On Accuracy Of Ki67 Immunohistochemistry Evaluation In Breast Cancer : SY01.01 | Image Analysis I
1000 Autor/in
  1. Besusparis, Justinas |
  2. Plancoulaine, B. |
  3. Rasmusson, Allan |
  4. Green, A. R. |
  5. Augulis, R. |
  6. Ellis, I. O. |
  7. Laurinaviciene, A. |
  8. Herlin, P. |
  9. Laurinavicius, Arvydas |
1000 Erscheinungsjahr 2016
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2016-06-22
1000 Erschienen in
1000 Quellenangabe
  • 1(8):117
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2016
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:117 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • INTRODUCTION / BACKGROUND: Gene expression studies have identified molecular subtypes of breast cancer with implications to chemotherapy recommendations. For distinction of these types a combination of hormone receptors and proliferative activity of tumor cells, estimated by Ki67 labeling index from immunohistochemistry (IHC) is used. Clinical studies are frequently based on IHC performed on tissue microarrays (TMA) with variable tissue sampling. This raises the need for evidence-based sampling criteria for individual studies. We present a novel tissue sampling simulation model and demonstrate its application on Ki67 assessment in breast cancer tissue taking into account its intra-tumoral heterogeneity. AIMS: The aim is, using a novel method for easy virtual TMA simulation, to determine the optimal tissue sampling requirements in the context of variable intra-tissue heterogeneity level of Ki67 immunohistochemistry in breast cancer. METHODS: Whole slide images (WSI) of 297 primary breast tumors immunohistochemically stained for Ki67 were subjected to digital image analysis (DIA). Percentage of invasive tumor cells stained for Ki67 were computed for hexagonal tiles superimposed on the WSI. From this, intra-tumoral Ki67 heterogeneity indicators (Haralick’s entropy values) were extracted and used to dichotomize the tumors into homogeneous and heterogeneous populations. Simulations with random selection of hexagons, equivalent to 0.75 mm circular diameter, were performed. The tissue sampling requirements were investigated in relation to tumor heterogeneity using linear regression and extended error analysis. RESULTS: The sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve a coefficient error of 10%, 5-6 cores were needed for homogeneous cases, while 11-12 cores for heterogeneous cases. In mixed tumor population, 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000 nuclei must be counted when the intra-tumor heterogeneity is mixed/unknown. Tumors at the lower scale of proliferative activity would require larger sampling (10-12 TMA cores, or 5,000 nuclei) to achieve the same error measurement results as for highly proliferative tumors. Our data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the heterogeneity of the tissue under study and needs to be determined on a per-use basis. We propose a method that can be applied to determine the TMA sampling strategy for specific biomarkers, tissues and study targets. In addition, our findings highlight the importance of high-capacity computer-based IHC measurement techniques to improve accuracy of the testing.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QmVzdXNwYXJpcywgSnVzdGluYXM=|https://frl.publisso.de/adhoc/uri/UGxhbmNvdWxhaW5lLCBCLg==|https://frl.publisso.de/adhoc/uri/UmFzbXVzc29uLCBBbGxhbg==|https://frl.publisso.de/adhoc/uri/R3JlZW4sIEEuIFIu|https://frl.publisso.de/adhoc/uri/QXVndWxpcywgUi4=|https://frl.publisso.de/adhoc/uri/RWxsaXMsIEkuIE8u|https://frl.publisso.de/adhoc/uri/TGF1cmluYXZpY2llbmUsIEEu|https://frl.publisso.de/adhoc/uri/SGVybGluLCBQLg==|https://frl.publisso.de/adhoc/uri/TGF1cmluYXZpY2l1cywgQXJ2eWRhcw==
1000 Label
1000 Förderer
  1. Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6431564.rdf
1000 Erstellt am 2022-02-15T12:25:21.225+0100
1000 Erstellt von 218
1000 beschreibt frl:6431564
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-08-18T13:04:47.569+0200
1000 Objekt bearb. Thu Aug 18 12:37:40 CEST 2022
1000 Vgl. frl:6431564
1000 Oai Id
  1. oai:frl.publisso.de:frl:6431564 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source