Download
1-s2.0-S1878929322000160-main.pdf 6,00MB
WeightNameValue
1000 Titel
  • A tutorial on the use of temporal principal component analysis in developmental ERP research - Opportunities and challenges
1000 Autor/in
  1. Scharf, Florian |
  2. Widmann, Andreas |
  3. Bonmassar, Carolina |
  4. Wetzel, Nicole |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-01-15
1000 Erschienen in
1000 Quellenangabe
  • 54:101072
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.dcn.2022.101072 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819392/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Developmental researchers are often interested in event-related potentials (ERPs). Data-analytic approaches based on the observed ERP suffer from major problems such as arbitrary definition of analysis time windows and regions of interest and the observed ERP being a mixture of latent underlying components. Temporal principal component analysis (PCA) can reduce these problems. However, its application in developmental research comes with the unique challenge that the component structure differs between age groups (so-called measurement non-invariance). Separate PCAs for the groups can cope with this challenge. We demonstrate how to make results from separate PCAs accessible for inferential statistics by re-scaling to original units. This tutorial enables readers with a focus on developmental research to conduct a PCA-based ERP analysis of amplitude differences. We explain the benefits of a PCA-based approach, introduce the PCA model and demonstrate its application to a developmental research question using real-data from a child and an adult group (code and data openly available). Finally, we discuss how to cope with typical challenges during the analysis and name potential limitations such as suboptimal decomposition results, data-driven analysis decisions and latency shifts.
1000 Sacherschließung
lokal Principal component analysis
lokal Decomposition
lokal Event-related potential
lokal Measurement invariance
lokal Tutorial
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-1659-4774|https://orcid.org/0000-0003-3664-8581|https://orcid.org/0000-0002-8412-6502|https://frl.publisso.de/adhoc/uri/V2V0emVsLCBOaWNvbGU=
1000 Label
1000 Förderer
  1. Center for Behavioral Brain Sciences |
  2. European Regional Development Fund |
  3. Leibniz-Gemeinschaft |
  4. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. ZS/2016/04/78120
  2. ZS/2016/04/78120
  3. P58/2017
  4. WE5026/1-2
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Center for Behavioral Brain Sciences |
    1000 Förderprogramm -
    1000 Fördernummer ZS/2016/04/78120
  2. 1000 joinedFunding-child
    1000 Förderer European Regional Development Fund |
    1000 Förderprogramm -
    1000 Fördernummer ZS/2016/04/78120
  3. 1000 joinedFunding-child
    1000 Förderer Leibniz-Gemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer P58/2017
  4. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer WE5026/1-2
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6431780.rdf
1000 Erstellt am 2022-02-23T11:08:56.585+0100
1000 Erstellt von 242
1000 beschreibt frl:6431780
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2022-03-02T10:39:06.678+0100
1000 Objekt bearb. Wed Mar 02 10:38:25 CET 2022
1000 Vgl. frl:6431780
1000 Oai Id
  1. oai:frl.publisso.de:frl:6431780 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source