Download
document (45).pdf 159,32KB
WeightNameValue
1000 Titel
  • Long-Term Application Of Automated Ki67 Quantification In Routine Breast Cancer Diagnostics
1000 Autor/in
  1. Wienert, Stephan |
  2. Klauschen, F. |
  3. Loibl, S. |
  4. von Minckwitz, G. |
  5. Denkert, C. |
1000 Erscheinungsjahr 2016
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2016-06-08
1000 Erschienen in
1000 Quellenangabe
  • 1(8):156
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2016
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:156 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • INTRODUCTION / BACKGROUND: The measurement of cell proliferation via Ki67 immunohistochemistry is an important part of tumor diagnostics leading to treatment decisions. The assessment according to the current guidelines is very time consuming which likely leads to counting only few cells or making the analysis completely estimated in many cases. Here, automated image analysis promises a standardized, time-saving and reproducible assessment. AIMS: We prior developed a computerized method that allows for an automated scoring of Ki67. This approach was validated with a study cohort of more than 1000 patients and showed a very high significance in both overall and disease free survival. The aim of this study was to test the capability of this method for the application in the daily routine diagnostics with the concomitant time pressure and huge variability in the patient material and staining results. METHODS: The developed computer algorithm and software was applied in daily routine breast cancer diagnostics under real conditions over more than one year. More than 100 cases have been analyzed. RESULTS: The retrospective analysis showed that the method was capable of accurately processing most of the images. Problems occurred when the counter staining was too weak which made it even difficult to conventionally assess those images. A user interaction was required in some cases to exclude falsely counted non-tumor cells.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/V2llbmVydCwgU3RlcGhhbg==|https://frl.publisso.de/adhoc/uri/S2xhdXNjaGVuLCBGLg==|https://frl.publisso.de/adhoc/uri/TG9pYmwsIFMu|https://frl.publisso.de/adhoc/uri/dm9uIE1pbmNrd2l0eiwgRy4=|https://frl.publisso.de/adhoc/uri/RGVua2VydCwgQy4=
1000 Label
1000 Förderer
  1. Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6432173.rdf
1000 Erstellt am 2022-03-13T14:50:11.418+0100
1000 Erstellt von 218
1000 beschreibt frl:6432173
1000 Bearbeitet von 218
1000 Zuletzt bearbeitet 2022-08-18T13:08:38.956+0200
1000 Objekt bearb. Thu May 12 19:16:46 CEST 2022
1000 Vgl. frl:6432173
1000 Oai Id
  1. oai:frl.publisso.de:frl:6432173 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source