Abstract Personal HealthTrain.pdf 116,47KB
1000 Titel
  • Hands-on federated analysis of semantic data using the Personal Health Train
1000 Autor/in
  1. Snel, Jasper |
  2. Sloep, Matthijs |
  3. Kalendralis, Petros |
  4. Gouthamchand, Varsha |
  5. Fijten, Rianne |
  6. Dekker, Andre |
  7. van Soest, Johan |
1000 Erscheinungsjahr 2022
1000 Publikationstyp
  1. Kongressschrift |
1000 Online veröffentlicht
  • 2022-03-15
1000 Erschienen in
1000 Übergeordneter Kongress
1000 Lizenz
1000 Verlagsversion
  • |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The Semantic Web was built for interoperability; for combining and sharing data. The reality is unfortunately that not all data can be shared as-is. Healthcare data is an obvious example due to its privacy-sensitive nature, but other organisations and individuals in general are becoming more aware of the sensitivity and practical problems of sharing data. Additionally the amount of data is increasing exponentially and we need help analysing and unlocking the potential of these data, which will allow for a lot of knowledge and insights to be discovered. The combination of semantic data with Federated Analysis (FA) as described in the Personal Health Train manifesto, will enable machine actionability and re-use of data; the main goal of the FAIR principles. FA techniques (e.g. federated learning, multiparty computation) are rapidly becoming more and more proficient in solving this problem by expanding the ways we can share insights and models without having to share sensitive data. FA is showing a way towards secure and ethical big data analytics, where sensitive data does not need to travel, but allows models to learn from data sets without compromising on privacy and security. Now you know the why, let’s explain the how: In this 4 hour crash course, we will present an open source federated analysis architecture and a real world usecase. This practical application of the Personal Health Train concept will show how federated data analysis can benefit patients, clinicians and researchers. And hopefully also you!
1000 Fächerklassifikation (DDC)
1000 DOI 10.4126/FRL01-006432240 |
1000 Liste der Beteiligten
1000 Hinweis
  • The Author Snel, Jasper has the ORCID: 0000-0001-9518-7274
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6432240.rdf
1000 Erstellt am 2022-03-15T11:07:23.179+0100
1000 Erstellt von 320
1000 beschreibt frl:6432240
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet Wed Apr 06 08:00:15 CEST 2022
1000 Objekt bearb. Wed Apr 06 07:59:21 CEST 2022
1000 Vgl. frl:6432240
1000 Oai Id
  1. |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source