Download
document (82).pdf 656,68KB
WeightNameValue
1000 Titel
  • Raman Spectroscopy-Based Cancer Diagnostic Platform For Pathology Classification In Barrett’s Oesophagus And Its Integration Into Clinic
1000 Autor/in
  1. Isabelle, Martin |
  2. Old, O. |
  3. Lloyd, G. |
  4. Lau, K. |
  5. Dorney, J. |
  6. Lewis, A. |
  7. Thomas, G. |
  8. Shepherd, N. |
  9. Barr, H. |
  10. Bell, I. |
  11. Stone, N. |
  12. Kendall, C. |
1000 Erscheinungsjahr 2016
1000 Publikationstyp
  1. Kongressschrift |
  2. Artikel |
1000 Online veröffentlicht
  • 2016-06-08
1000 Erschienen in
1000 Quellenangabe
  • 1(8):190
1000 Übergeordneter Kongress
1000 Copyrightjahr
  • 2016
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.17629/www.diagnosticpathology.eu-2016-8:190 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • INTRODUCTION / BACKGROUND: Raman spectroscopy (RS) has been shown to accurately classify tissue pathology in a variety of conditions and organ systems. Much of this work has been performed using Raman microspectrometers on tissue sections. Despite the demonstrated potential as an accurate cancer diagnostic tool, RS is yet to be adopted by the clinic for histopathology review. The Stratified Medicine through Advanced Raman Technologies (SMART) consortium has begun to address some of the hurdles (e.g. tissue sample preparation, data collection, pre-processing and transferability) in its adoption for cancer diagnosis. SMART is a multicentre industry-clinical-academic collaboration with the aim of developing a pathology platform for advanced diagnosis, using developments in hardware and software. Renishaw’s Streamline™ Raman imaging technology enables the collection of Raman spectra much faster without compromising signal to noise AIMS: This study aims to assess the ability of this technique to accurately classify tissue pathology, using an oesophageal tissue model. This demonstrates the project’s mission to deliver a robust Raman based diagnostic platform to enable clinical researchers to stage cancer, define tumour margin, build cancer diagnostic models and discover novel disease bio markers. METHODS: Tissue was collected from the oesophagus in patients undergoing endoscopy or resection. Specimens were collected from patients with Barrett’s oesophagus (BO), dysplasia and adenocarcinoma, and snap frozen in liquid nitrogen. 8μm tissue sections were placed onto calcium fluoride slides for spectroscopic measurement and with contiguous sections stained with haematoxylin and eosin (H&E) for histological comparison. Raman spectra were collected across homogeneous regions of tissue pathology, using Streamline™ acquisitions of 60 seconds/line, at 1.1μm spatial resolution. Classification models were constructed to discriminate pathology subtypes. RESULTS: Advanced multivariate statistical analysis tools were used to develop pathology classification models, which were then tested using leave-one-out cross-validation. Each sample was then classified using a ‘voting classification’ for all pixels from one sample. The sensitivity and specificity of this pathology classification model using RS to discriminate dysplasia/adenocarcinoma from BO produced sensitivity and specificities >80%. By combining multivariate statistical analysis with Streamline™ Raman acquisition of spectral data, we have demonstrated good sensitivities and specificities. This study illustrates the potential of non-invasive rapid Raman spectral mapping measurements and development of a robust and validated oesophageal classification model that are able to classify tissue pathology, providing a diagnostic tool for researchers and clinicians with potential application to other pathology and tissue types.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SXNhYmVsbGUsIE1hcnRpbg==|https://frl.publisso.de/adhoc/uri/T2xkLCBPLg==|https://frl.publisso.de/adhoc/uri/TGxveWQsIEcu|https://frl.publisso.de/adhoc/uri/TGF1LCBLLg==|https://frl.publisso.de/adhoc/uri/RG9ybmV5LCBKLg==|https://frl.publisso.de/adhoc/uri/TGV3aXMsIEEu|https://frl.publisso.de/adhoc/uri/VGhvbWFzLCBHLg==|https://frl.publisso.de/adhoc/uri/U2hlcGhlcmQsIE4u|https://frl.publisso.de/adhoc/uri/QmFyciwgSC4=|https://frl.publisso.de/adhoc/uri/QmVsbCwgSS4=|https://frl.publisso.de/adhoc/uri/U3RvbmUsIE4u|https://frl.publisso.de/adhoc/uri/S2VuZGFsbCwgQy4=
1000 Label
1000 Förderer
  1. Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Verein für den biol. technol. Fortschritt in der Medizin, Heidelberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6433118.rdf
1000 Erstellt am 2022-04-21T12:12:27.377+0200
1000 Erstellt von 218
1000 beschreibt frl:6433118
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-08-18T13:12:08.194+0200
1000 Objekt bearb. Mon May 16 10:54:44 CEST 2022
1000 Vgl. frl:6433118
1000 Oai Id
  1. oai:frl.publisso.de:frl:6433118 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source