Download
bioengineering-09-00337-2.pdf 1,32MB
WeightNameValue
1000 Titel
  • Contribution to the 3R Principle: Description of a Specimen-Specific Finite Element Model Simulating 3-Point-Bending Tests in Mouse Tibiae
1000 Autor/in
  1. Huang, Xiaowei |
  2. Nussler, Andreas |
  3. Reumann, Marie K. |
  4. Augat, Peter |
  5. Menger, Maximilian M. |
  6. Ghallab, Ahmed |
  7. Hengstler, Jan |
  8. Histing, Tina |
  9. Ehnert, Sabrina |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-07-25
1000 Erschienen in
1000 Quellenangabe
  • 9(8):337
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/bioengineering9080337 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331748/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Bone mechanical properties are classically determined by biomechanical tests, which normally destroy the bones and disable further histological or molecular analyses. Thus, obtaining biomechanical data from bone usually requires an additional group of animals within the experimental setup. Finite element models (FEMs) may non-invasively and non-destructively simulate mechanical characteristics based on material properties. The present study aimed to establish and validate an FEM to predict the mechanical properties of mice tibiae. The FEM was established based on µCT (micro-Computed Tomography) data of 16 mouse tibiae. For validating the FEM, simulated parameters were compared to biomechanical data obtained from 3-point bending tests of the identical bones. The simulated and the measured parameters correlated well for bending stiffness (R2 = 0.9104, p < 0.0001) and yield displacement (R2 = 0.9003, p < 0.0001). The FEM has the advantage that it preserves the bones’ integrity, which can then be used for other analytical methods. By eliminating the need for an additional group of animals for biomechanical tests, the established FEM can contribute to reducing the number of research animals in studies focusing on bone biomechanics. This is especially true when in vivo µCT data can be utilized where multiple bone scans can be performed with the same animal at different time points. Thus, by partially replacing biomechanical experiments, FEM simulations may reduce the overall number of animals required for an experimental setup investigating bone biomechanics, which supports the 3R (replace, reduce, and refine) principle.
1000 Sacherschließung
lokal rodents
lokal long bone
lokal finite element analysis
lokal validation
lokal biomechanics
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SHVhbmcsIFhpYW93ZWk=|https://orcid.org/0000-0002-6666-6791|https://frl.publisso.de/adhoc/uri/UmV1bWFubiwgTWFyaWUgSy4=|https://orcid.org/0000-0003-4805-2128|https://frl.publisso.de/adhoc/uri/TWVuZ2VyLCBNYXhpbWlsaWFuIE0u|https://orcid.org/0000-0003-0695-3403|https://orcid.org/0000-0002-1427-5246|https://frl.publisso.de/adhoc/uri/SGlzdGluZywgVGluYQ==|https://orcid.org/0000-0003-4347-1702
1000 (Academic) Editor
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6434889.rdf
1000 Erstellt am 2022-09-09T08:09:46.340+0200
1000 Erstellt von 254
1000 beschreibt frl:6434889
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2022-09-13T08:13:22.257+0200
1000 Objekt bearb. Tue Sep 13 08:12:56 CEST 2022
1000 Vgl. frl:6434889
1000 Oai Id
  1. oai:frl.publisso.de:frl:6434889 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source