Download
sensors-22-06101-v2.pdf 2,12MB
WeightNameValue
1000 Titel
  • Discriminating Free Hand Movements Using Support Vector Machine and Recurrent Neural Network Algorithms
1000 Autor/in
  1. Reichert, Christoph |
  2. Klemm, Lisa |
  3. Mushunuri, Raghava Vinaykanth |
  4. KALYANI, AVINASH |
  5. Schreiber, Stefanie |
  6. Kuehn, Esther |
  7. Azanon, Elena |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-08-15
1000 Erschienen in
1000 Quellenangabe
  • 22(16):6101
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3390/s22166101 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412700/ |
1000 Ergänzendes Material
  • https://www.mdpi.com/1424-8220/22/16/6101/htm#app1-sensors-22-06101 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Decoding natural hand movements is of interest for human-computer interaction and may constitute a helpful tool in the diagnosis of motor diseases and rehabilitation monitoring. However, the accurate measurement of complex hand movements and the decoding of dynamic movement data remains challenging. Here, we introduce two algorithms, one based on support vector machine (SVM) classification combined with dynamic time warping, and the other based on a long short-term memory (LSTM) neural network, which were designed to discriminate small differences in defined sequences of hand movements. We recorded hand movement data from 17 younger and 17 older adults using an exoskeletal data glove while they were performing six different movement tasks. Accuracy rates in decoding the different movement types were similarly high for SVM and LSTM in across-subject classification, but, for within-subject classification, SVM outperformed LSTM. The SVM-based approach, therefore, appears particularly promising for the development of movement decoding tools, in particular if the goal is to generalize across age groups, for example for detecting specific motor disorders or tracking their progress over time.
1000 Sacherschließung
lokal data glove
lokal motor disorders
lokal motor system
lokal neurodegneration
lokal quantification
lokal stroke
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-8649-9791|https://orcid.org/0000-0003-3504-9966|https://orcid.org/0000-0002-6856-4617|https://orcid.org/0000-0001-9044-9255|https://orcid.org/0000-0003-4439-4374|https://orcid.org/0000-0003-3169-1951|https://orcid.org/0000-0001-9543-1222
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Bundesland Sachsen-Anhalt |
  2. European Regional Development Fund |
  3. Deutsche Forschungsgemeinschaft |
1000 Fördernummer
  1. -
  2. ZS/2016/04/78113; ZS/2016/04/78120
  3. SFB-1436, TPC03; TPZ02; 425899996
1000 Förderprogramm
  1. -
  2. Center for Behavioral Brain Sciences (CBBS)
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesland Sachsen-Anhalt |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer European Regional Development Fund |
    1000 Förderprogramm Center for Behavioral Brain Sciences (CBBS)
    1000 Fördernummer ZS/2016/04/78113; ZS/2016/04/78120
  3. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer SFB-1436, TPC03; TPZ02; 425899996
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6435037.rdf
1000 Erstellt am 2022-09-19T15:05:34.126+0200
1000 Erstellt von 242
1000 beschreibt frl:6435037
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2022-11-16T11:54:54.940+0100
1000 Objekt bearb. Wed Nov 16 11:54:39 CET 2022
1000 Vgl. frl:6435037
1000 Oai Id
  1. oai:frl.publisso.de:frl:6435037 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source