Download
Lell-Plant Genome-2021.pdf 2,24MB
WeightNameValue
1000 Titel
  • Optimizing the setup of multienvironmental hybrid wheat yield trials for boosting the selection capability
1000 Autor/in
  1. Lell, Moritz |
  2. Reif, Jochen |
  3. Zhao, Yusheng |
1000 Erscheinungsjahr 2021
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-09-19
1000 Erschienen in
1000 Quellenangabe
  • 14(3):e20150
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://dx.doi.org/10.1002/tpg2.20150 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Abstract The accuracy of genomic prediction increases with increasing heritability, and thus the challenge of optimizing the design of multienvironment yield trials under a limited budget arises. With this in mind, we aimed to find the best of several options to sparsely distribute a fixed number of plots across different environments to increase the accuracy of hybrid performance prediction. We used a comprehensive published genomic and phenotypic data set of 1,604 winter wheat (Triticum aestivum L.) hybrids and compared several commonly used biometric models for phenotypic data analysis in a resampling study to identify the one that most accurately estimated the hybrid performance in different imbalanced trials. Our results showed that when using information about genotypic relationships, genotypic values were more strongly associated with the reference values than when this information was ignored. In addition, a balanced environmental sampling resulted in an adequate characterization of each environment and increased the accuracy for estimating the hybrid performance. One promising design involved dividing the genotypes into equally sized subgroups that were tested in a subset of environments, with the constraint that the subgroups overlapped with respect to the environments. This scenario appears to be particularly appropriate, as it provided both high accuracies in the estimates of genotypic values and had low variability resulting from the data sample used. Thus, we were able to clearly demonstrate the utility for optimizing the design of multienvironment hybrid wheat yield trials in times of genomic selection.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-2428-5157|https://orcid.org/0000-0002-6742-265X|https://orcid.org/0000-0001-6783-5182
1000 Label
1000 Förderer
  1. Bundesministerium für Ernährung und Landwirtschaft |
1000 Fördernummer
  1. 2818408B18
1000 Förderprogramm
  1. Wheat BigData project
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Ernährung und Landwirtschaft |
    1000 Förderprogramm Wheat BigData project
    1000 Fördernummer 2818408B18
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6438252.rdf
1000 Erstellt am 2022-11-03T15:36:43.581+0100
1000 Erstellt von 325
1000 beschreibt frl:6438252
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2022-11-17T11:29:20.541+0100
1000 Objekt bearb. Thu Nov 17 11:28:24 CET 2022
1000 Vgl. frl:6438252
1000 Oai Id
  1. oai:frl.publisso.de:frl:6438252 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source