Download
Sahu-Comput Struct Biotechnol-2021.pdf 2,02MB
WeightNameValue
1000 Titel
  • Advances in flux balance analysis by integrating machine learning and mechanism-based models
1000 Autor/in
  1. Sahu, Ankur |
  2. Blätke, Mary-Ann |
  3. Szymanski, Jedrzej |
  4. Töpfer, Nadine |
1000 Erscheinungsjahr 2021
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-08-05
1000 Erschienen in
1000 Quellenangabe
  • 19:4626-4640
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1016/j.csbj.2021.08.004 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382995/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
1000 Sacherschließung
lokal multi-scale modeling
lokal machine learning
lokal flux balance analysis
lokal genome-scale modeling
lokal kinetic models
lokal petri-nets
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-4877-5705|https://orcid.org/0000-0002-4790-7377|https://orcid.org/0000-0003-1086-0920|https://orcid.org/0000-0002-3027-5799
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6438440.rdf
1000 Erstellt am 2022-11-15T14:33:35.649+0100
1000 Erstellt von 325
1000 beschreibt frl:6438440
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2022-11-22T13:14:16.013+0100
1000 Objekt bearb. Tue Nov 22 13:14:01 CET 2022
1000 Vgl. frl:6438440
1000 Oai Id
  1. oai:frl.publisso.de:frl:6438440 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source