Download
s42003-022-04080-7.pdf 3,14MB
WeightNameValue
1000 Titel
  • Identifying behavioral structure from deep variational embeddings of animal motion
1000 Autor/in
  1. Luxem, Kevin |
  2. Mocellin, Petra |
  3. Fuhrmann, Falko |
  4. Kürsch, Johannes |
  5. Miller, Stephanie R. |
  6. Palop, Jorge J. |
  7. Remy, Stefan |
  8. Bauer, Pavol |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-11-18
1000 Erschienen in
1000 Quellenangabe
  • 5(1):1267
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s42003-022-04080-7 |
1000 Ergänzendes Material
  • https://www.nature.com/articles/s42003-022-04080-7#Sec26 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Quantification and detection of the hierarchical organization of behavior is a major challenge in neuroscience. Recent advances in markerless pose estimation enable the visualization of high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and reliable technical approaches are needed to uncover underlying structure in these data and to segment behavior into discrete hierarchically organized motifs. Here, we present an unsupervised probabilistic deep learning framework that identifies behavioral structure from deep variational embeddings of animal motion (VAME). By using a mouse model of beta amyloidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but also captures a hierarchical representation of the motif's usage. The approach allows for the grouping of motifs into communities and the detection of differences in community-specific motif usage of individual mouse cohorts that were undetectable by human visual observation. Thus, we present a robust approach for the segmentation of animal motion that is applicable to a wide range of experimental setups, models and conditions without requiring supervised or a-priori human interference.
1000 Sacherschließung
lokal Computational neuroscience
lokal Behavioural methods
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/THV4ZW0sIEtldmlu|https://frl.publisso.de/adhoc/uri/TW9jZWxsaW4sIFBldHJh|https://frl.publisso.de/adhoc/uri/RnVocm1hbm4sIEZhbGtv|https://frl.publisso.de/adhoc/uri/S8O8cnNjaCwgSm9oYW5uZXM=|https://frl.publisso.de/adhoc/uri/TWlsbGVyLCBTdGVwaGFuaWUgUi4=|https://frl.publisso.de/adhoc/uri/UGFsb3AsIEpvcmdlIEou|https://orcid.org/0000-0002-3386-1662|https://frl.publisso.de/adhoc/uri/QmF1ZXIsIFBhdm9s
1000 Label
1000 Förderer
  1. European Research Council |
  2. Deutsche Forschungsgemeinschaft |
  3. Projekt DEAL |
1000 Fördernummer
  1. NIA P01AG073082
  2. SFB 1436; SFB 1089
  3. -
1000 Förderprogramm
  1. CoG;SUBDECODE
  2. -
  3. Open Access Funding
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Research Council |
    1000 Förderprogramm CoG;SUBDECODE
    1000 Fördernummer NIA P01AG073082
  2. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer SFB 1436; SFB 1089
  3. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm Open Access Funding
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6438494.rdf
1000 Erstellt am 2022-11-23T11:30:07.300+0100
1000 Erstellt von 242
1000 beschreibt frl:6438494
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-07-20T13:15:50.851+0200
1000 Objekt bearb. Thu Jul 20 13:15:50 CEST 2023
1000 Vgl. frl:6438494
1000 Oai Id
  1. oai:frl.publisso.de:frl:6438494 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source