Download
GeoHealth - 2022 - Dietrich - Using Community Science to Better Understand Lead Exposure Risks.pdf 1,39MB
WeightNameValue
1000 Titel
  • Using Community Science to Better Understand Lead Exposure Risks
1000 Autor/in
  1. Dietrich, Matthew |
  2. Shukle, John T. |
  3. Krekeler, Mark P. S. |
  4. Wood, Leah R. |
  5. Filippelli, Gabriel |
1000 Erscheinungsjahr 2022
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-01-19
1000 Erschienen in
1000 Quellenangabe
  • 6(2):e2021GH000525
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1029/2021GH000525 |
1000 Ergänzendes Material
  • https://agupubs.onlinelibrary.wiley.com/doi/suppl/10.1029/2021GH000525 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening and intervention is paramount from a public health perspective. We have synthesized a large national data set of Pb concentrations in household dusts from across the United States (U.S.), part of a community science initiative called “DustSafe.” Using these results, we have developed a straightforward logistic regression model that correctly predicts whether Pb is elevated (>80 ppm) or low (<80 ppm) in household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses only variables of approximate housing age and whether there is peeling paint in the interior of the home, illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right screening questions. Scanning electron microscopy supports a common presence of Pb paint in several dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age and peeling paint in the model. This model was also implemented into an interactive mobile app that aims to increase community-wide participation with Pb household screening. The app will hopefully provide greater awareness of Pb risks and a highly efficient way to begin mitigation.
1000 Sacherschließung
lokal scanning electron microscopy (SEM)
lokal pollution remediation
lokal community science
lokal pollution intervention
lokal predictive modeling
lokal lead (Pb)
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-4464-5340|https://frl.publisso.de/adhoc/uri/U2h1a2xlLCBKb2huIFQu|https://frl.publisso.de/adhoc/uri/S3Jla2VsZXIsIE1hcmsgUC4gUy4=|https://frl.publisso.de/adhoc/uri/V29vZCwgTGVhaCBSLg==|https://orcid.org/0000-0003-3434-5982
1000 Label
1000 Förderer
  1. National Science Foundation |
1000 Fördernummer
  1. EAR-2052589, ICER-1701132
1000 Förderprogramm
  1. -
1000 Dateien
  1. Using Community Science to Better Understand Lead Exposure Risks
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer EAR-2052589, ICER-1701132
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6438607.rdf
1000 Erstellt am 2022-12-01T11:13:37.396+0100
1000 Erstellt von 286
1000 beschreibt frl:6438607
1000 Bearbeitet von 286
1000 Zuletzt bearbeitet 2022-12-01T11:15:22.574+0100
1000 Objekt bearb. Thu Dec 01 11:14:47 CET 2022
1000 Vgl. frl:6438607
1000 Oai Id
  1. oai:frl.publisso.de:frl:6438607 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source