Download
journal.pone.0244177.pdf 796,00KB
WeightNameValue
1000 Titel
  • Which COVID policies are most effective? A Bayesian analysis of COVID-19 by jurisdiction
1000 Autor/in
  1. Wibbens, Phebo D. |
  2. Koo, Wesley |
  3. McGahan, Anita M. |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-12-29
1000 Erschienen in
1000 Quellenangabe
  • 15(12):e0244177
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1371/journal.pone.0244177 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771876 |
1000 Ergänzendes Material
  • https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244177#sec012 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • This paper reports the results of a Bayesian analysis on large-scale empirical data to assess the effectiveness of eleven types of COVID-control policies that have been implemented at various levels of intensity in 40 countries and U.S. states since the onset of the pandemic. The analysis estimates the marginal impact of each type and level of policy as implemented in concert with other policies. The purpose is to provide policymakers and the general public with an estimate of the relative effectiveness of various COVID-control strategies. We find that a set of widely implemented core policies reduces the spread of virus but not by enough to contain the pandemic except in a few highly compliant jurisdictions. The core policies include the cancellation of public events, restriction of gatherings to fewer than 100 people, recommendation to stay at home, recommended restrictions on internal movement, implementation of a partial international travel ban, and coordination of information campaigns. For the median jurisdiction, these policies reduce growth rate in new infections from an estimated 270% per week to approximately 49% per week, but this impact is insufficient to prevent eventual transmission throughout the population because containment occurs only when a jurisdiction reduces growth in COVID infection to below zero. Most jurisdictions must also implement additional policies, each of which has the potential to reduce weekly COVID growth rate by 10 percentage points or more. The slate of these additional high-impact policies includes targeted or full workplace closings for all but essential workers, stay-at-home requirements, and targeted school closures.
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Pandemics
lokal Social policy
lokal School closures
lokal Public policy
lokal Virus testing
lokal Adults
lokal Schools
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-1517-3858|https://orcid.org/0000-0003-4246-9977|https://orcid.org/0000-0002-5584-8207
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6439215.rdf
1000 Erstellt am 2022-12-30T11:04:14.034+0100
1000 Erstellt von 218
1000 beschreibt frl:6439215
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-01-23T12:35:21.651+0100
1000 Objekt bearb. Mon Jan 23 12:34:57 CET 2023
1000 Vgl. frl:6439215
1000 Oai Id
  1. oai:frl.publisso.de:frl:6439215 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source