Download
Berkner-Theor Appl Genet-2022.pdf 7,08MB
WeightNameValue
1000 Titel
  • Choosing the right tool: Leveraging of plant genetic resources in wheat (Triticum aestivum L.) benefits from selection of a suitable genomic prediction model
1000 Autor/in
  1. Berkner, Marcel Oliver |
  2. Schulthess Börgel, Albert Wilhelm |
  3. Zhao, Yusheng |
  4. Jiang, Yong |
  5. Oppermann, Markus |
  6. Reif, Jochen |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-10-01
1000 Erschienen in
1000 Quellenangabe
  • 135(12):4391-4407
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00122-022-04227-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734214/ |
1000 Ergänzendes Material
  • https://link.springer.com/article/10.1007/s00122-022-04227-4#Sec19 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • KEY MESSAGE: Genomic prediction of genebank accessions benefits from the consideration of additive-by-additive epistasis and subpopulation-specific marker effects. Wheat (Triticum aestivum L.) and other species of the Triticum genus are well represented in genebank collections worldwide. The substantial genetic diversity harbored by more than 850,000 accessions can be explored for their potential use in modern plant breeding. Characterization of these large number of accessions is constrained by the required resources, and this fact limits their use so far. This limitation might be overcome by engaging genomic prediction. The present study compared ten different genomic prediction approaches to the prediction of four traits, namely flowering time, plant height, thousand grain weight, and yellow rust resistance, in a diverse set of 7745 accession samples from Germany's Federal ex situ genebank at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben. Approaches were evaluated based on prediction ability and robustness to the confounding influence of strong population structure. The authors propose the wide application of extended genomic best linear unbiased prediction due to the observed benefit of incorporating additive-by-additive epistasis. General and subpopulation-specific additive ridge regression best linear unbiased prediction, which accounts for subpopulation-specific marker-effects, was shown to be a good option if contrasting clusters are encountered in the analyzed collection. The presented findings reaffirm that the trait's genetic architecture as well as the composition and relatedness of the training set and test set are major driving factors for the accuracy of genomic prediction.
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2262-5098|https://orcid.org/0000-0002-9365-0939|https://orcid.org/0000-0001-6783-5182|https://orcid.org/0000-0002-2824-677X|https://orcid.org/0000-0002-3370-3218|https://orcid.org/0000-0002-6742-265X
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Horizon 2020 |
  3. Deutsche Forschungsgemeinschaft |
  4. Projekt DEAL |
1000 Fördernummer
  1. 031B0184A
  2. 862613
  3. 491250510
  4. -
1000 Förderprogramm
  1. GeneBank2.0
  2. Open Access funding
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm GeneBank2.0
    1000 Fördernummer 031B0184A
  2. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 |
    1000 Förderprogramm Open Access funding
    1000 Fördernummer 862613
  3. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer 491250510
  4. 1000 joinedFunding-child
    1000 Förderer Projekt DEAL |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6439474.rdf
1000 Erstellt am 2023-01-12T14:27:28.912+0100
1000 Erstellt von 325
1000 beschreibt frl:6439474
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-04-14T07:54:10.404+0200
1000 Objekt bearb. Fri Apr 14 07:54:10 CEST 2023
1000 Vgl. frl:6439474
1000 Oai Id
  1. oai:frl.publisso.de:frl:6439474 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source