Download
1616-3443_a000658.pdf 1,32MB
WeightNameValue
1000 Titel
  • Biomarkers of Anxiety Acquisition and Generalization in Virtual Reality Experiments
1000 Autor/in
  1. Genheimer, Hannah |
  2. Pauli, Paul |
  3. Andreatta, Marta |
1000 Erscheinungsjahr 2022
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-11-30
1000 Erschienen in
1000 Quellenangabe
  • 51(3-4):206-222
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1026/1616-3443/a000658 |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Anxiety disorders are characterized by exaggerated responses to a threatening situation and overgeneralization. Context conditioning has been used for the identification of risk factors. This systematic literature search identifies 16 articles published between 1990 and 2021 on differential anxiety conditioning and generalization in humans. Additionally, we provide example data for individuals suffering from panic attacks with and without depressive symptoms. Successful anxiety acquisition (discrimination between anxiety and safety context) was found on the subjective level of anxiety and US-expectancy, on the physiological level of electrodermal activity, and in the defensive behavior of startle response. Anxiety generalization (discrimination between generalization and safety context) was found on the verbal but not on the physiobehavioral level. In sum, we emphasize the impact of virtual reality on anxiety research. Verbal and physiobehavioral responses serve as reliable biomarkers for anxiety. Few studies found ratings to be the best predictor for anxiety generalization. Genetic predisposition or personality traits might foster overgeneralization.</jats:p>
1000 Sacherschließung
lokal Original Article
lokal virtual reality
lokal Konditionierung
lokal Kontext
lokal conditioning
lokal generalization
lokal context
lokal virtuelle Realität
lokal Furcht und Angst
lokal fear and anxiety
lokal Generalisierung
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/R2VuaGVpbWVyLCBIYW5uYWg=|https://frl.publisso.de/adhoc/uri/UGF1bGksIFBhdWw=|https://orcid.org/0000-0002-1217-8266
1000 Hinweis
  • DeepGreen-ID: 7760efdf69a44a028f47f69cb95f521d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6439943.rdf
1000 Erstellt am 2023-01-30T09:03:15.683+0100
1000 Erstellt von 322
1000 beschreibt frl:6439943
1000 Zuletzt bearbeitet 2024-05-03T12:04:26.894+0200
1000 Objekt bearb. Fri May 03 12:04:26 CEST 2024
1000 Vgl. frl:6439943
1000 Oai Id
  1. oai:frl.publisso.de:frl:6439943 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source