Download
s13244-022-01345-x.pdf 1,19MB
WeightNameValue
1000 Titel
  • Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review
1000 Autor/in
  1. Koch, Anna |
  2. Jeelof, Lara S. |
  3. Muntinga, Caroline L. P. |
  4. Gootzen, T. A. |
  5. van de Kruis, Nienke M. A. |
  6. Nederend, Joost |
  7. Boers, Tim |
  8. van der Sommen, Fons |
  9. Piek, Jurgen M. J. |
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-02-15
1000 Erschienen in
1000 Quellenangabe
  • 14:34
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13244-022-01345-x |
  • https://ncbi.nlm.nih.gov/pmc/articles/PMC9931983/ |
1000 Ergänzendes Material
  • https://insightsimaging.springeropen.com/articles/10.1186/s13244-022-01345-x#Sec30 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • OBJECTIVES: Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors. METHODS: We searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards. RESULTS: In thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6–100% and 66.7–100% and specificities ranged from 76.3–100%; 69–100% and 77.8–100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set. CONCLUSION: Based on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.
1000 Sacherschließung
lokal Ovarian neoplasms
lokal Machine learning
lokal Diagnosis
lokal Computer-assisted
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-4947-3514|https://frl.publisso.de/adhoc/uri/SmVlbG9mLCBMYXJhIFMu|https://frl.publisso.de/adhoc/uri/TXVudGluZ2EsIENhcm9saW5lIEwuIFAu|https://frl.publisso.de/adhoc/uri/R29vdHplbiwgVC4gQS4=|https://frl.publisso.de/adhoc/uri/dmFuIGRlIEtydWlzLCBOaWVua2UgTS4gQS4=|https://frl.publisso.de/adhoc/uri/TmVkZXJlbmQsIEpvb3N0|https://frl.publisso.de/adhoc/uri/Qm9lcnMsIFRpbQ==|https://frl.publisso.de/adhoc/uri/dmFuIGRlciBTb21tZW4sIEZvbnM=|https://frl.publisso.de/adhoc/uri/UGllaywgSnVyZ2VuIE0uIEou
1000 Label
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6441137.rdf
1000 Erstellt am 2023-03-27T11:43:23.404+0200
1000 Erstellt von 284
1000 beschreibt frl:6441137
1000 Bearbeitet von 25
1000 Zuletzt bearbeitet 2023-03-28T14:01:58.388+0200
1000 Objekt bearb. Tue Mar 28 11:08:13 CEST 2023
1000 Vgl. frl:6441137
1000 Oai Id
  1. oai:frl.publisso.de:frl:6441137 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source