Download
fpubh-10-965262.pdf 1,21MB
WeightNameValue
1000 Titel
  • Applying risk matrices for assessing the risk of psychosocial hazards at work
1000 Autor/in
  1. Taibi, Yacine |
  2. Metzler, Yannick Arnold |
  3. Bellingrath, Silja |
  4. Neuhaus, Ciel Alena |
  5. Müller, Andreas |
1000 Erscheinungsjahr 2022
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-09-06
1000 Erschienen in
1000 Quellenangabe
  • 10:965262
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.3389/fpubh.2022.965262 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485617/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Although wide-ranging amendments in health and safety regulations at the European and national level oblige employers to conduct psychosocial risk assessment, it is still under debate how psychosocial hazards can be properly evaluated. For psychosocial hazards, an epidemiological, risk-oriented understanding similar to physical hazards is still missing, why most existing approaches for hazard evaluation insufficiently conceive psychosocial risk as a combination of the probability of a hazard and the severity of its consequences (harm), as found in traditional risk matrix approaches (RMA). We aim to contribute to a methodological advancement in psychosocial risk assessment by adapting the RMA from physical onto psychosocial hazards. First, we compare and rate already existing procedures of psychosocial risk evaluation regarding their ability to reliably assess and prioritize risk. Second, we construct a theoretical framework that allows the risk matrix for assessing psychosocial risk. This is done by developing different categories of harm based on psychological theories of healthy work design and classifying hazards through statistical procedures. Taking methodological and theoretical considerations into account, we propose a 3 × 3 risk matrix that scales probability and severity for psychosocial risk assessment. Odds ratios between hazards and harm can be used to statistically assess psychosocial risks. This allows for both risk evaluation and prioritizing to further conduct risk-mitigation. Our contribution advances the RMA as a framework that allows for assessing the relation between psychosocial hazards and harm disregarding which theory of work stress is applied or which tool is used for hazard identification. By this, we also contribute to further possible developments in empirical research regarding how to assess the risk of workplace stress. The risk matrix can help to understand how psychosocial hazards can be evaluated and organizations can use the approach as a guidance to establish a suitable method for psychosocial risk evaluation.
1000 Sacherschließung
lokal mental health
lokal risk evaluation
lokal occupational stress
lokal occupational health
lokal risk matrix approach
lokal work design
lokal occupational safety
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-8606-2963|https://orcid.org/0000-0001-7362-3477|https://frl.publisso.de/adhoc/uri/QmVsbGluZ3JhdGgsIFNpbGph|https://frl.publisso.de/adhoc/uri/TmV1aGF1cywgQ2llbCBBbGVuYQ==|https://frl.publisso.de/adhoc/uri/TcO8bGxlciwgQW5kcmVhcw==
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. Universität Duisburg-Essen |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. Open Access Publication Fund
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universität Duisburg-Essen |
    1000 Förderprogramm Open Access Publication Fund
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6441469.rdf
1000 Erstellt am 2023-04-25T16:57:48.024+0200
1000 Erstellt von 254
1000 beschreibt frl:6441469
1000 Bearbeitet von 317
1000 Zuletzt bearbeitet 2023-05-02T09:35:51.379+0200
1000 Objekt bearb. Tue May 02 09:35:40 CEST 2023
1000 Vgl. frl:6441469
1000 Oai Id
  1. oai:frl.publisso.de:frl:6441469 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source