Download
s00066-020-01626-8.pdf 357,91KB
WeightNameValue
1000 Titel
  • Applications of radiomics and machine learning for radiotherapy of malignant brain tumors
1000 Autor/in
  1. Kocher, Martin |
  2. Ruge, Maximilian I. |
  3. Galldiks, Norbert |
  4. Lohmann, Philipp |
1000 Erscheinungsjahr 2020
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2020-05-11
1000 Erschienen in
1000 Quellenangabe
  • 196(10):856-867
1000 Copyrightjahr
  • 2020
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00066-020-01626-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498494/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use of radiotherapy in patients with malignant brain tumors.!##!Methods!#!This study is based on comprehensive literature research on machine learning and radiomics analyses in neuroimaging and their potential application for radiotherapy in patients with malignant glioma or brain metastases.!##!Results!#!Feature-based radiomics and deep learning-based machine learning methods can be used to improve brain tumor diagnostics and automate various steps of radiotherapy planning. In glioma patients, important applications are the determination of WHO grade and molecular markers for integrated diagnosis in patients not eligible for biopsy or resection, automatic image segmentation for target volume planning, prediction of the location of tumor recurrence, and differentiation of pseudoprogression from actual tumor progression. In patients with brain metastases, radiomics is applied for additional detection of smaller brain metastases, accurate segmentation of multiple larger metastases, prediction of local response after radiosurgery, and differentiation of radiation injury from local brain metastasis relapse. Importantly, high diagnostic accuracies of 80-90% can be achieved by most approaches, despite a large variety in terms of applied imaging techniques and computational methods.!##!Conclusion!#!Clinical application of automated image analyses based on radiomics and artificial intelligence has a great potential for improving radiotherapy in patients with malignant brain tumors. However, a common problem associated with these techniques is the large variability and the lack of standardization of the methods applied.
1000 Sacherschließung
lokal Glioma
lokal Tumor Suppressor Proteins/genetics [MeSH]
lokal Neoplasm Grading [MeSH]
lokal Deep Learning [MeSH]
lokal Progression-Free Survival [MeSH]
lokal Artificial intelligence
lokal Brain Neoplasms/surgery [MeSH]
lokal Radiation Oncology/methods [MeSH]
lokal Glioma/diagnostic imaging [MeSH]
lokal Diagnosis, Differential [MeSH]
lokal Brain metastases
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Glioma/pathology [MeSH]
lokal Glioblastoma/radiotherapy [MeSH]
lokal Magnetic Resonance Imaging [MeSH]
lokal Neuroimaging/methods [MeSH]
lokal Sensitivity and Specificity [MeSH]
lokal Imaging Genomics [MeSH]
lokal Positron-Emission Tomography [MeSH]
lokal Neoplasm Recurrence, Local [MeSH]
lokal Deep learning
lokal Computational Biology [MeSH]
lokal Brain Neoplasms/radiotherapy [MeSH]
lokal Brain Neoplasms/secondary [MeSH]
lokal Radiotherapy Planning, Computer-Assisted [MeSH]
lokal Humans [MeSH]
lokal DNA Repair Enzymes/genetics [MeSH]
lokal Review Article
lokal DNA Modification Methylases/genetics [MeSH]
lokal Glioma/radiotherapy [MeSH]
lokal Radiosurgery [MeSH]
lokal Promoter Regions, Genetic/genetics [MeSH]
lokal Neoplasm Proteins/genetics [MeSH]
lokal DNA Methylation [MeSH]
lokal Multiparametric PET/MRI
lokal Brain Neoplasms/diagnostic imaging [MeSH]
lokal Glioblastoma/diagnostic imaging [MeSH]
lokal Radiation Oncology/trends [MeSH]
lokal Isocitrate Dehydrogenase/genetics [MeSH]
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-5674-9227|https://frl.publisso.de/adhoc/uri/UnVnZSwgTWF4aW1pbGlhbiBJLg==|https://frl.publisso.de/adhoc/uri/R2FsbGRpa3MsIE5vcmJlcnQ=|https://frl.publisso.de/adhoc/uri/TG9obWFubiwgUGhpbGlwcA==
1000 Hinweis
  • DeepGreen-ID: 0328de1a258c4be98fe3203b8cb84d6f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6441815.rdf
1000 Erstellt am 2023-04-25T18:35:59.494+0200
1000 Erstellt von 322
1000 beschreibt frl:6441815
1000 Zuletzt bearbeitet Thu Oct 19 11:12:55 CEST 2023
1000 Objekt bearb. Thu Oct 19 11:12:55 CEST 2023
1000 Vgl. frl:6441815
1000 Oai Id
  1. oai:frl.publisso.de:frl:6441815 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source