Download
s41747-021-00228-y.pdf 5,97MB
WeightNameValue
1000 Titel
  • Virtual non-calcium dual-energy CT: clinical applications
1000 Autor/in
  1. D’Angelo, Tommaso |
  2. Albrecht, Moritz |
  3. Caudo, Danilo |
  4. Mazziotti, Silvio |
  5. Vogl, Thomas J. |
  6. Wichmann, Julian L. |
  7. Martin, Simon |
  8. Yel, Ibrahim |
  9. Ascenti, Giorgio |
  10. Koch, Vitali |
  11. Cicero, Giuseppe |
  12. Blandino, Alfredo |
  13. Booz, Christian |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-09-03
1000 Erschienen in
1000 Quellenangabe
  • 5(1):38
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41747-021-00228-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413416/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality.
1000 Sacherschließung
lokal Bone Marrow Diseases [MeSH]
lokal Humans [MeSH]
lokal Calcium
lokal Bone Marrow [MeSH]
lokal Tomography (x-ray
lokal Bone marrow
lokal Tomography, X-Ray Computed [MeSH]
lokal Narrative Review
lokal Edema
lokal Sensitivity and Specificity [MeSH]
lokal Algorithms
lokal computed)
lokal Calcium [MeSH]
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/ROKAmUFuZ2VsbywgVG9tbWFzbw==|https://orcid.org/0000-0002-4966-6407|https://frl.publisso.de/adhoc/uri/Q2F1ZG8sIERhbmlsbw==|https://frl.publisso.de/adhoc/uri/TWF6emlvdHRpLCBTaWx2aW8=|https://frl.publisso.de/adhoc/uri/Vm9nbCwgVGhvbWFzIEou|https://frl.publisso.de/adhoc/uri/V2ljaG1hbm4sIEp1bGlhbiBMLg==|https://frl.publisso.de/adhoc/uri/TWFydGluLCBTaW1vbg==|https://frl.publisso.de/adhoc/uri/WWVsLCBJYnJhaGlt|https://frl.publisso.de/adhoc/uri/QXNjZW50aSwgR2lvcmdpbw==|https://frl.publisso.de/adhoc/uri/S29jaCwgVml0YWxp|https://frl.publisso.de/adhoc/uri/Q2ljZXJvLCBHaXVzZXBwZQ==|https://frl.publisso.de/adhoc/uri/QmxhbmRpbm8sIEFsZnJlZG8=|https://frl.publisso.de/adhoc/uri/Qm9veiwgQ2hyaXN0aWFu
1000 Hinweis
  • DeepGreen-ID: c11e4ae00dab48daa425d0a32e8f0a39 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
  1. Virtual non-calcium dual-energy CT: clinical applications
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6443308.rdf
1000 Erstellt am 2023-04-26T18:08:23.263+0200
1000 Erstellt von 322
1000 beschreibt frl:6443308
1000 Zuletzt bearbeitet 2023-10-19T14:25:12.077+0200
1000 Objekt bearb. Thu Oct 19 14:25:12 CEST 2023
1000 Vgl. frl:6443308
1000 Oai Id
  1. oai:frl.publisso.de:frl:6443308 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source