Download
s41746-021-00507-3.pdf 3,51MB
WeightNameValue
1000 Titel
  • Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation
1000 Autor/in
  1. DuMont Schütte, August |
  2. Hetzel, Jürgen |
  3. Gatidis, Sergios |
  4. Hepp, Tobias |
  5. Dietz, Benedikt |
  6. Bauer, Stefan |
  7. Schwab, Patrick |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-09-24
1000 Erschienen in
1000 Quellenangabe
  • 4(1):141
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41746-021-00507-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463544/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual's information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.
1000 Sacherschließung
lokal Article
lokal Computed tomography
lokal Brain imaging
lokal Medical research
lokal Radiography
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-1923-407X|https://frl.publisso.de/adhoc/uri/SGV0emVsLCBKw7xyZ2Vu|https://frl.publisso.de/adhoc/uri/R2F0aWRpcywgU2VyZ2lvcw==|https://frl.publisso.de/adhoc/uri/SGVwcCwgVG9iaWFz|https://orcid.org/0000-0002-6260-7866|https://orcid.org/0000-0003-1712-060X|https://orcid.org/0000-0002-2868-7794
1000 Hinweis
  • DeepGreen-ID: 372005b08cd446fa80f64f662e70a3d2 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6443558.rdf
1000 Erstellt am 2023-04-27T09:47:59.509+0200
1000 Erstellt von 322
1000 beschreibt frl:6443558
1000 Zuletzt bearbeitet 2023-10-19T15:02:07.182+0200
1000 Objekt bearb. Thu Oct 19 15:02:07 CEST 2023
1000 Vgl. frl:6443558
1000 Oai Id
  1. oai:frl.publisso.de:frl:6443558 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source