Download
s41746-021-00388-6.pdf 2,24MB
WeightNameValue
1000 Titel
  • Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care
1000 Autor/in
  1. Peine, Arne |
  2. Hallawa, Ahmed |
  3. Bickenbach, Johannes |
  4. Dartmann, Guido |
  5. Fazlic, Lejla Begic |
  6. Schmeink, Anke |
  7. Ascheid, Gerd |
  8. Thiemermann, Christoph |
  9. Schuppert, Andreas |
  10. Kindle, Ryan |
  11. Celi, Leo Anthony |
  12. Marx, Gernot |
  13. Martin, Lukas |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-02-19
1000 Erschienen in
1000 Quellenangabe
  • 4(1):32
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41746-021-00388-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895944/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • The aim of this work was to develop and evaluate the reinforcement learning algorithm VentAI, which is able to suggest a dynamically optimized mechanical ventilation regime for critically-ill patients. We built, validated and tested its performance on 11,943 events of volume-controlled mechanical ventilation derived from 61,532 distinct ICU admissions and tested it on an independent, secondary dataset (200,859 ICU stays; 25,086 mechanical ventilation events). A patient 'data fingerprint' of 44 features was extracted as multidimensional time series in 4-hour time steps. We used a Markov decision process, including a reward system and a Q-learning approach, to find the optimized settings for positive end-expiratory pressure (PEEP), fraction of inspired oxygen (FiO
1000 Sacherschließung
lokal Article
lokal Medical research
lokal Translational research
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGVpbmUsIEFybmU=|https://orcid.org/0000-0003-3932-4873|https://frl.publisso.de/adhoc/uri/Qmlja2VuYmFjaCwgSm9oYW5uZXM=|https://frl.publisso.de/adhoc/uri/RGFydG1hbm4sIEd1aWRv|https://frl.publisso.de/adhoc/uri/RmF6bGljLCBMZWpsYSBCZWdpYw==|https://orcid.org/0000-0002-9929-2925|https://orcid.org/0000-0003-4068-3558|https://frl.publisso.de/adhoc/uri/VGhpZW1lcm1hbm4sIENocmlzdG9waA==|https://frl.publisso.de/adhoc/uri/U2NodXBwZXJ0LCBBbmRyZWFz|https://frl.publisso.de/adhoc/uri/S2luZGxlLCBSeWFu|https://orcid.org/0000-0001-6712-6626|https://frl.publisso.de/adhoc/uri/TWFyeCwgR2Vybm90|https://orcid.org/0000-0001-8650-5090
1000 Hinweis
  • DeepGreen-ID: 16d48eee80b5410182828f216183c21d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6443562.rdf
1000 Erstellt am 2023-04-27T09:49:02.791+0200
1000 Erstellt von 322
1000 beschreibt frl:6443562
1000 Zuletzt bearbeitet 2023-10-19T15:02:46.364+0200
1000 Objekt bearb. Thu Oct 19 15:02:46 CEST 2023
1000 Vgl. frl:6443562
1000 Oai Id
  1. oai:frl.publisso.de:frl:6443562 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source