Download
s41370-021-00355-z.pdf 3,08MB
WeightNameValue
1000 Titel
  • Predicting traffic noise using land-use regression—a scalable approach
1000 Autor/in
  1. Staab, Jeroen |
  2. Schady, Arthur |
  3. Weigand, Matthias |
  4. Lakes, Tobia |
  5. Taubenböck, Hannes |
1000 Erscheinungsjahr 2021
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2021-07-02
1000 Erschienen in
1000 Quellenangabe
  • 32(2):232-243
1000 Copyrightjahr
  • 2021
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41370-021-00355-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920888/ |
1000 Publikationsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • Background!#!In modern societies, noise is ubiquitous. It is an annoyance and can have a negative impact on human health as well as on the environment. Despite increasing evidence of its negative impacts, spatial knowledge about noise distribution remains limited. Up to now, noise mapping is frequently inhibited by the necessary resources and therefore limited to selected areas.!##!Objective!#!Based on the assumption, that prevalent noise is determined by the arrangement of sources and the surrounding environment in which the sound propagates, we build a geostatistical model representing these parameters. Aiming for a large-scale noise mapping approach, we utilize publicly available data, context-aware feature engineering and a linear land-use regression (LUR) model.!##!Methods!#!Compliant to the European Noise Directive 2002/49/EG, we work at a high spatial granularity of 10 × 10-m resolution. As reference, we use the day-evening-night noise level indicator L!##!Results!#!The experimental results suggest the necessity for more than 500 samples stratified over the different noise levels to produce a representative model. Eventually, using 21 selected variables, our model was able to explain large proportions of the yearly averaged road noise (L!##!Significance!#!This data is new, particular for small communities that have not been mapped sufficiently in Europe so far. In conjunction, our findings also supplement conventionally sampled studies using physical microphones and spatially blocked cross-validations.
1000 Sacherschließung
lokal Europe [MeSH]
lokal Article
lokal Exposure modeling
lokal Humans [MeSH]
lokal Geospatial analyses
lokal Environmental Exposure [MeSH]
lokal Noise, Transportation [MeSH]
lokal Environmental monitoring
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7342-4440|https://orcid.org/0000-0002-3078-9546|https://orcid.org/0000-0002-5553-4152|https://frl.publisso.de/adhoc/uri/TGFrZXMsIFRvYmlh|https://orcid.org/0000-0003-4360-9126
1000 Hinweis
  • DeepGreen-ID: 4db4877cbecf46d98b3ece84959e0cbb ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6443878.rdf
1000 Erstellt am 2023-04-27T11:11:14.042+0200
1000 Erstellt von 322
1000 beschreibt frl:6443878
1000 Zuletzt bearbeitet 2023-10-20T11:37:29.896+0200
1000 Objekt bearb. Fri Oct 20 11:37:29 CEST 2023
1000 Vgl. frl:6443878
1000 Oai Id
  1. oai:frl.publisso.de:frl:6443878 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source